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Abstract. This note provides a simplified account of the paper [IZ23] in the context of convex co-compact

groups. The paper [IZ23] works in the very general context of naive convex co-compact groups which
introduces many technical complications, making our paper quite long. In this note, we restrict ourselves

to only convex co-compact groups and, as a result, obtain a more concise presentation. We write this note

hoping to convey the main ideas underlying [IZ23] in a more streamlined way. This simplified treatment
already appears in my thesis [Isl21] and this note is not intended for publication.
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1. Introduction

The notion of convex co-compact subgroups of PGLd(R) generalize convex co-compact Kleinian groups
from the rank one Lie group SO(d, 1) (d ≥ 2) to higher rank Lie groups like PGLd(R) for d ≥ 3. We now
define convex co-compact groups.

Definition 1.1 ([DGK17]). A discrete subgroup Γ ≤ PGLd(R) is called convex co-compact if:

(1) there exists a properly convex domain Ω ⊂ P(Rd) such that Γ ≤ Aut(Ω), and
(2) the set CΩ(Γ) ⊂ Ω is non-empty and Γ acts co-compactly on CΩ(Γ), where CΩ(Γ) is the convex hull

in Ω of the full orbital limit set Lorb
Ω (Γ) :=

⋃
x∈Ω

(
Γx \ Γx

)
.

Since the Ω in the definition of convex co-compact groups is not canonical, we will remove this ambiguity
by explicitly mentioning the properly convex domain wherever necessary, i.e. we will say that “Γ ≤ Aut(Ω)
is a convex co-compact group” instead of “Γ is a convex co-compact group”.

A recent result of Danciger-Guéritaud-Kassel, independently Zimmer, establishes a connection between
the Hilbert geometry of the properly convex domain (CΩ(Γ),dΩ) and Anosov representations. More precisely,
they prove the following.

Theorem 1.2 ([DGK17, Zim21]). Suppose Ω is a properly convex domain and Γ ≤ Aut(Ω) is a convex
co-compact group. Then the following are equivalent:

(1) (CΩ(Γ),dΩ) is a Gromov hyperbolic space,
(2) Γ is a Gromov hyperbolic group, and
(3) the inclusion Γ ↪→ PGLd(R) is a projective Anosov representation.

Anosov representations are a class of representations of Gromov hyperbolic groups into real semi-simple
Lie groups that generalizes classical Teichmüller theory, i.e. the study of discrete faithful representations of
hyperbolic surface groups into PSL2(R). They are discrete faithful representations that have good dynamical
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and geometric properties. Introduced by Labourie [Lab06] and studied subsequently by many authors, this
area has received much attention lately, see for instance [GGKW17, KLP17, BIW14, Poz19].

The above Theorem 1.2 can be interpreted as a way of associating convex projective structures to projective
Anosov representations. This opens up a more geometric way of thinking about Anosov representations. In
their paper, Danciger-Guéritaud-Kassel asked the following natural question [DGK17, Appendix A, Question
A.2] for relatively hyperbolic groups (see Appendix A).

Question 1. What geometric conditions on CΩ(Γ) will correspond to Γ relatively hyperbolic with respect to
virtually Abelian subgroups of rank at least two?

By virtue of Theorem 1.2, this question can be interpreted as seeking a generalization of projective Anosov
representations to relatively hyperbolic groups. Note that the current definition of Anosov representations
work only for Gromov hyperbolic groups and generalizing it beyond Gromov hyperbolicity is an area of
active research, see for instance [Kas18, Gui19]. The notion of relative Anosov representations due to [KL18]
and [Zhu22] provide an approach. But we note that those approaches do not provide an answer to the above
question. Indeed, the peripheral subgroups in the work of [KL18, Zhu22] consist of unipotent elements while
it is easy to verify that convex co-compact subgroups cannot contain unipotent elements other than the
identity.

There are many interesting examples of convex co-compact groups coming from Coxeter groups and 3-
manifold theory that satisfy the conditions in Question 1, see for instance Figure 1 or the papers [Ben06,
BDL18, CLM16, DGK17].

Figure 1. Examples of three-dimensional properly convex domains Ω that admit co-
compact action by Γ where the groups Γ are relatively hyperbolic with respect to subgroups
virtually isomorphic to Z2 [RSS+19]

We answer Question 1 in joint work with A. Zimmer in [IZ23] by introducing the notion of properly convex
domains with strongly isolated simplices, see Definition 3.1 and the figure below. We will now introduce the
definition here. We will say that a properly embedded simplex is maximal if it is not properly contained
in any other properly embedded simplex. Note that this notion of maximality does not mean that we are
looking only at simplices of the maximal possible dimension.

Definition 1.3 ([IZ23, Definition 1.15]). Suppose Γ ≤ Aut(Ω) is a convex co-compact group and SΓ is
the collection of all maximal properly embedded simplices in C of dimension at least two. We will say
that (CΩ(Γ),dΩ) has strongly isolated simplices provided: for any r ≥ 0, there exists D(r) ≥ 0 such that if
S1, S2 ∈ S are distinct, then

diamΩ (NΩ(S1; r) ∩NΩ(S2; r)) ≤ D(r).

We answer Question 1 by proving a theorem connecting relative hyperbolicity (with respect to virtually
Abelian subgroups of rank at least two) of a convex co-compact group and properly convex domains with
strongly isolated simplices. The precise statement is as follows.
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Figure 2. The figure on the left is a maximal properly embedded 2-simplex. The figure on
the right is the illustration of the condition: strongly isolated simplices.

Theorem 1.4 ([IZ23, Theorem 1.7]). Suppose Ω ⊂ P(Rd) is a properly convex domain, Γ ≤ Aut(Ω) is
a convex co-compact group, and SΓ is the family of all maximal properly embedded simplices in CΩ(Γ) of
dimension at least two. Then the following are equivalent:

(1) (CΩ(Γ),dΩ) has strongly isolated simplices,
(2) (CΩ(Γ),dΩ) is a relatively hyperbolic space with respect to SΓ,
(3) Γ is a relatively hyperbolic group with respect to a collection of virtually Abelian subgroups of rank

at least two.

Theorem 1.4 can be viewed as a real projective analogue of a CAT(0) result. In [HK05], Hruska-Kleiner
study CAT(0) spaces with isolated flats and proves an analogoues result in that setting. In this analogy,
maximal properly embedded simplices correspond to maximal totally geodesic flats in CAT(0) spaces (see
[IZ21, Ben04]).

We also establish some finer geometric properties of CΩ(Γ) when Γ ≤ Aut(Ω) is a convex co-compact
group and (CΩ(Γ),dΩ) has strongly isolated simplices. We will need some terminology to state the theorem

precisely. The ideal boundary of CΩ(Γ) is defined as ∂i CΩ(Γ) := CΩ(Γ)∩∂Ω, i.e. it is the part of the boundary
of CΩ(Γ) that is at “infinity” in (CΩ(Γ),dΩ). If C ⊂ Ω is a convex subset and x ∈ C, then

FC(x) = {x} ∪ {y ∈ C : ∃ an open line segment in C containing both x and y}.

Theorem 1.5 ([IZ23, Theorem 1.8]). Suppose Γ ≤ Aut(Ω) is a convex co-compact group and (CΩ(Γ),dΩ)
has strongly isolated simplices. Then

(1) Γ has finitely many orbits in SΓ.
(2) If S ∈ SΓ, then StabΓ(S) acts co-compactly on S and contains a finite index subgroup isomorphic to

Zk where k = dimS.
(3) If A ≤ Γ is an infinite Abelian subgroup of rank at least two, then there exists a unique S ∈ SΓ with

A ≤ StabΓ(S).
(4) If S ∈ SΓ and x ∈ ∂S, then FΩ(x) = FCΩ(Γ)(x) = FS(x).
(5) If S1, S2 ∈ SΓ are distinct, then #(S1 ∩ S2) ≤ 1 and ∂S1 ∩ ∂S2 = ∅.
(6) If ℓ ⊂ ∂i CΩ(Γ) is a non-trivial line segment, then there exists S ∈ SΓ with ℓ ⊂ ∂S.
(7) If x, y, z ∈ ∂i CΩ(Γ) form a half triangle in CΩ(Γ) (i.e. [x, y] ∪ [y, z] ⊂ ∂i CΩ(Γ) and (x, z) ⊂ CΩ(Γ)),

then there exists S ∈ SΓ such that x, y, z ∈ ∂S.
(8) If x ∈ ∂i CΩ(Γ) is not a C1-smooth point of ∂Ω (i.e. Ω does not have a unique supporting hyperplane

at x), then there exists S ∈ SΓ with x ∈ ∂S.

2. Preliminaries

2.1. Properly Convex Domains and Hilbert Geometry. A subset C ⊂ P(Rd) is:

(1) properly convex if there exists an affine chart A of P(Rd) where C ⊂ A is a bounded convex subset.
(2) a properly convex domain if C is properly convex and open in P(Rd).

Given a properly convex set C ⊂ P(Rd) and a subset X ⊂ C, we define its convex hull as

ConvHullC(X) := ∩
{
Y : Y is a closed convex subset such that X ⊂ Y ⊂ C

}
.
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A line segment in P(Rd) is a connected subset of a projective line. Given two points x, y ∈ P(Rd) there
is no canonical line segment with endpoints x and y, but we will use the following convention: if C ⊂ P(Rd)
is a properly convex set and x, y ∈ C, then (when the context is clear) we will let [x, y] denote the closed
line segment joining x to y which is contained in C. In this case, we will also let (x, y) = [x, y] \ {x, y},
[x, y) = [x, y] \ {y}, and (x, y] = [x, y] \ {x}.

Suppose that Ω ⊂ P(Rd) is a properly convex domain. If x, y ∈ Ω are distinct, let [a, b] := P(Span{x, y})∩Ω
where a and b labelled such that x ∈ [a, y] (i.e. the points are ordered a, x, y, b along [a, b]). Then the the
Hilbert distance between x and y is defined to be

dΩ(x, y) :=
1

2
log[a, x, y, b]

where [a, x, y, b] := |x−b||y−a|
|x−a||y−b| is the cross ratio (here |·| is some (any) norm in some (any) affine chart which

contains a, x, y, b). Then (Ω,dΩ) is a complete geodesic metric space and Aut(Ω) acts properly and by
isometries on Ω (see for instance [BK53, Section 28]). Further, the projective line segment [x, y] is a geodesic
for the Hilbert distance.

Convexity is preserved under taking r-neighbourhoods in the Hilbert metric of closed convex sets. If
C ⊂ Ω is a closed convex set and r > 0 then NΩ(C; r) := {x ∈ Ω : dΩ(x,C) < r} is a convex set [CLT15,

Corollary 1.10]. The corresponding closed neighbourhood of C, i.e. NΩ(C; r), is also convex.
Consider the equivalence relation ∼Ω on Ω is given by: x ∼Ω y if and only if there exists an open projective

line segment in Ω containing x and y. The equivalence class of x ∈ Ω is denoted by FΩ(x) [CM14, Section
3.3]. The following results are simple consequences of convexity, see for instance [IZ21, Isl].

Proposition 2.1.

(1) FΩ(x) is open in its span.
(2) FΩ(x) = Ω whenever x ∈ Ω and FΩ(x) ⊂ ∂Ω whenever x ∈ ∂Ω.
(3) y ∈ FΩ(x) if and only if x ∈ FΩ(y) if and only if FΩ(x) = FΩ(y).
(4) Suppose x, y ∈ Ω, p ∈ FΩ(x), q ∈ FΩ(y), and z ∈ (x, y). Then

(p, q) ⊂ FΩ(z).

In particular, (p, q) ⊂ Ω if and only if (x, y) ⊂ Ω.
(5) If y ∈ ∂FΩ(x), then FΩ(y) ⊂ ∂FΩ(x),

Proposition 2.1 shows that FΩ(x) is a relatively open convex subset of ∂Ω for all x ∈ ∂Ω. Thus FΩ(x) can
be equipped with a Hilbert metric dFΩ(x) for any x ∈ ∂Ω. We will now state some estimates that relate the
Hilbert metric in the interior of Ω with the Hilbert metric on the faces FΩ(x). These results are elementary
and can be found in many places, for instance [IZ21].

Proposition 2.2. Suppose {xn} is a sequence in Ω and xn → x ∈ Ω. If {yn} is another sequence in Ω,
yn → y ∈ Ω, and

lim inf
n→∞

dΩ(xn, yn) < +∞,

then y ∈ FΩ(x) and

dFΩ(x)(x, y) ≤ lim inf
n→∞

dΩ(xn, yn).

Corollary 2.3. Suppose A,B ⊂ Ω be non-empty subsets such that A ⊂ NΩ(B; r) for some r > 0. If a ∈ A,
then there exists b ∈ B such that a ∈ FΩ(b) and dFΩ(b)(a, b) ≤ r.

Corollary 2.4 ([DGK17, Corollary 3.5]). Suppose Ω ⊂ P(Rd) is a properly convex domain, y ∈ ∂Ω, and
{ym} and {zm} are two sequences in Ω. If ym → y and dΩ(ym, zm) → 0, then zm → y.

Lemma 2.5 ([Cra09, Lemma 8.3]). Suppose that σ1, σ2 : [0, T ] → Ω are two unit speed projective line
geodesics, then for 0 ≤ t ≤ T ,

dΩ(σ1(t), σ2(t)) ≤ dΩ(σ1(0), σ2(0)) + dΩ(σ1(T ), σ2(T )).

We introduce two metric geometric tools: closest-point projection and center of mass.
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Definition 2.6. Suppose Ω ⊂ P(Rd) is a properly convex domain and A ⊂ Ω is a non-empty closed convex
set. If p ∈ Ω, the closest-point projection of p on A is

πA(p) := A ∩ BΩ(p,dΩ(p,A)).

If p ∈ Ω, πA(p) is a compact convex set. Moreover, if g ∈ Aut(Ω), then g ◦ πA = πgA ◦ g.
There is a notion of “center of mass” for compact subsets of a properly convex domain. Let Kd denote

the set of all pairs (Ω,K) where Ω ⊂ P(Rd) is a properly convex domain and K ⊂ Ω is a compact subset.

Proposition 2.7 ([IZ21]). There exists a function

(Ω,K) ∈ Kd 7−→ CoMΩ(K) ∈ P(Rd)

such that:

(1) CoMΩ(K) ∈ ConvHullΩ(K),
(2) CoMΩ(K) = CoMΩ(ConvHullΩ(K)), and
(3) if g ∈ PGLd(R), then gCoMΩ(K) = CoMgΩ(gK),

for every (Ω,K) ∈ Kd.

2.2. Dynamics of Automorphisms in Hilbert Geometry. If g ∈ GLd(R), let λ1(g), λ2(g), . . . , λd(g)
denote the absolute values of eigenvalues of g (over C), indexed such that

λ1(g) ≥ λ2(g) ≥ . . . ≥ λd(g).

In particular, we will use the notation λmax(g) := λ1(g) and λmin(g) := λd(g). If h ∈ PGLd(R), we define

λi

λj
(h) :=

λi(h̃)

λj(h̃)

where h̃ ∈ GLd(R) is some (hence any) lift of h.

Proposition 2.8 ([CLT15]). Suppose Ω is a properly convex domain and g ∈ Aut(Ω). Then the translation
length of g, defined as

τΩ(g) := inf
x∈Ω

dΩ(x, gx),

is given by

τΩ(g) = log

(
λ1

λd
(g)

)
.

The next two results relate the faces of a convex domain with the behavior of automorphisms.

Proposition 2.9 ([IZ21]). Suppose Ω ⊂ P(Rd) is a properly convex domain, p0 ∈ Ω, and gn ∈ Aut(Ω) is a
sequence such that

(1) gn(p0) → x ∈ ∂Ω,
(2) g−1

n (p0) → y ∈ ∂Ω, and
(3) gn converges to T in P(End(Rd)).

Then image(T ) ⊂ SpanFΩ(x), P(kerT ) ∩ Ω = ∅, and y ∈ P(kerT ).

Given a group G ≤ PGLd(R) define G
End

to be the closure of the set {g ∈ GLd(R) : [g] ∈ G} in End(Rd).

Proposition 2.10 ([IZ21]). Suppose Ω ⊂ P(Rd) is a properly convex domain, C ⊂ Ω is a non-empty closed

convex subset, and G ≤ StabΩ(C) acts co-compactly on C. If x ∈ ∂i C, then there exists T ∈ G
End

such that

(1) P(kerT ) ∩ Ω = ∅,
(2) T (Ω) = FΩ(x), and
(3) T (C) = FΩ(x) ∩ ∂i C.
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2.3. (Local) Hausdorff topology. Let dΩ
Hauss denote the Hausdorff distance on subsets of Ω induced by

dΩ, that is: for subsets A,B ⊂ Ω define

dΩ
Hauss(A,B) = max

{
sup
a∈A

inf
b∈B

dΩ(a, b), sup
b∈B

inf
a∈A

dΩ(a, b)

}
.

Proposition 2.11. Assume p1, p2, q1, q2 ∈ Ω, FΩ(p1) = FΩ(p2), and FΩ(q1) = FΩ(q2). If (p1, q1) ∩ Ω ̸= ∅,
then (p2, q2) ⊂ Ω and

dHauss
Ω

(
(p1, q1), (p2, q2)

)
≤ max{dFΩ(p1)(p1, p2),dFΩ(q1)(q1, q2)}.

The local Hausdorff topology is a natural topology on the set of all closed subsets of Ω induced by the
Hausdorff distance dΩ

Hauss. For a closed subset C0 ⊂ Ω, r0, ε0 > 0, and x0 ∈ Ω, define U(C0, r0, ε0, x0) to
be the set of all closed subsets C of Ω such that

dΩ
Hauss(BΩ(x0, r0) ∩ C,BΩ(x0, r0) ∩ C0) < ε0.

The local Hausdorff topology is the topology generated by U(·, ·, ·, ·) on the set of closed subsets of Ω.

2.4. Projective Simplices. For 0 ≤ k ≤ d, consider the following subsets of P(Rd):

Sk :=
{
[x1 : · · · : xk+1 : 0 : · · · : 0] ∈ P(Rd) : x1 > 0, . . . , xk + 1 > 0

}
.

A subset S ⊂ P(Rd) is a k−dimensional simplex if there exists g ∈ PGLd(R) such that S = gSk. In this
case, the k points

g[1 : 0 : · · · : 0], g[0 : 1 : 0 : · · · : 0], . . . , g[0 : · · · : 0 : 1 : 0 : · · · : 0] ∈ ∂S

are the vertices of S. We now discuss some basic properties of projective simplices (see [Nus88, Proposition
1.7], [dlH93], or [IZ23, Section 5]). Choosing suitable projective coordinates, we write a (d− 1) dimensional
projective simplex as

S =
{
[x1 : · · · : xd] ∈ P(Rd) : x1 > 0, . . . , xd > 0

}
.

The Hilbert metric on S can be explicitly computed as:

dS

(
[x1 : · · · : xd], [y1 : · · · : yd]

)
= max

1≤i,j≤d

1

2

∣∣∣∣log xiyj
yixj

∣∣∣∣ .
Let G ≤ GLd(R) denote the group generated by the group of diagonal matrices with positive entries and the
group of permutation matrices. Then Aut(S) = {[g] ∈ PGLd(R) : g ∈ G}.

Proposition 2.12. If S ⊂ P(Rd) is a simplex, then (S,HS) is quasi-isometric to real Euclidean space of
dimension dimS.

We will frequently use the following observation about the faces of properly embedded simplices.

Observation 2.13. Suppose Ω ⊂ P(Rd) is a properly convex domain and S ⊂ Ω is a properly embedded
simplex. If x ∈ ∂S, then

(1) FS(x) is properly embedded in FΩ(x).
(2) FS(x) = S ∩ FΩ(x).

The following lemma allows us to “wiggle” the vertices of a properly embedded simplex S and obtain a
new properly embedded simplex “parallel” to S.

Proposition 2.14 ([IZ23, Lemma 3.18]). Suppose that Ω ⊂ P(Rd) is a properly convex domain and S ⊂ Ω
is a properly embedded simplex with vertices v1, . . . , vp. If wj ∈ FΩ(vj) for 1 ≤ j ≤ p, then

S′ := Ω ∩ P(Span{w1, . . . , wp})
is a properly embedded simplex with vertices w1, . . . , wp. Moreover,

dHauss
Ω (S, S′) ≤ max

1≤j≤p
dFΩ(vj)(vj , wj).

Proposition 2.15. Suppose that Ω ⊂ P(Rd) is a properly convex domain. The set of all properly embedded
simplices in Ω of dimension at least two is a closed set in the local Hausdorff topology.
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2.5. Linear Projection on Simplices. In this section, we construct certain linear projection maps asso-
ciated to a properly embedded simplex in a properly convex domain. This notion was introduced in [IZ23]
and all results in this section appear in [IZ23].

Definition 2.16. Suppose that Ω ⊂ P(Rd) is a properly convex domain and S ⊂ Ω is a properly embedded
simplex with dimS = (q − 1) ≥ 1. A set of co-dimension one linear subspaces H := {H1, . . . ,Hq} is
S-supporting when:

(1) Each P(Hj) is a supporting hyperplane of Ω,
(2) If F1, . . . , Fq ⊂ ∂S are the boundary faces of maximal dimension, then (up to relabelling) Fj ⊂ P(Hj)

for all 1 ≤ j ≤ q.

Proposition 2.17 ([IZ23]). Suppose that Ω ⊂ P(Rd) is a properly convex domain, S ⊂ Ω is a properly
embedded simplex, and H is a set of S-supporting hyperplanes. Then

SpanS ⊕ (∩H∈HH) = Rd and Ω ∩ P (∩H∈HH) = ∅.

Using Proposition 2.17, we define the following linear projection.

Definition 2.18. Suppose Ω ⊂ P(Rd) is a properly convex domain, S ⊂ Ω is a properly embedded simplex,
and H is a set of S-supporting hyperplanes. Define LS,H ∈ End(Rd) to be the linear projection

SpanS ⊕ (∩H∈HH) −→ SpanS

We call LS,H the linear projection of Ω onto S relative to H.

We now derive some basic properties of these projection maps. We use the notation

FΩ(X) = ∪x∈XFΩ(x)

where Ω ⊂ P(Rd) and X ⊂ Ω.

Proposition 2.19 ([IZ23]). Suppose Ω ⊂ P(Rd) is a properly convex domain, S ⊂ Ω is a properly embedded
simplex, and H is a set of S-supporting hyperplanes. Then

(1) LS,H(Ω) = S.
(2) If x ∈ ∂Ω ∩ P (∩H∈HH) and y ∈ ∂S, then [x, y] ⊂ ∂Ω.
(3) P (∩H∈HH) ∩ FΩ(∂S) = ∅.

For a general properly embedded simplex, there could be many different sets of supporting hyperplanes,
but the next result shows that the corresponding linear projections form a compact set.

Definition 2.20. Suppose that Ω ⊂ P(Rd) is a properly convex domain and S ⊂ Ω is a properly embedded
simplex. Define

LS := {LS,H : H is a set of S-supporting hyperplanes} ⊂ End(Rd).

Proposition 2.21 ([IZ23]). Suppose that Ω ⊂ P(Rd) is a properly convex domain and S ⊂ Ω is a properly
embedded simplex. Then LS is a compact subset of End(Rd).

2.6. Convex Co-compact Groups and Flat Torus Theorem.

Definition 2.22. A discrete subgroup Γ ≤ PGLd(R) is called convex co-compact if:

(1) there exists a properly convex domain Ω ⊂ P(Rd) such that Γ ≤ Aut(Ω), and
(2) the set CΩ(Γ) ⊂ Ω is non-empty and Γ acts co-compactly on CΩ(Γ), where CΩ(Γ) is the convex hull

in Ω of the full orbital limit set Lorb
Ω (Γ) :=

⋃
x∈Ω

(
Γx \ Γx

)
.

Remark 2.23. If Γ acts co-compactly on a properly convex domain Ω, then CΩ(Γ) = Ω and Γ is a convex
co-compact group.

If Γ is convex co-compact, the boundary of CΩ(Γ) splits into the ideal boundary ∂i CΩ(Γ) := ∂Ω ∩ CΩ(Γ)
and the non-ideal boundary ∂n CΩ(Γ) := ∂CΩ(Γ) \ ∂i CΩ(Γ) = Ω ∩ ∂CΩ(Γ). We recall some results from
[DGK17] regarding properties of convex co-compact groups.

Theorem 2.24 ([DGK17]). Suppose Γ ≤ Aut(Ω) is a convex co-compact group. Then:

(1) CΩ(Γ) is the minimal non-empty Γ-invariant closed convex subset of Ω,
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(2) Lorb
Ω (Γ) = ∂i CΩ(Γ),

(3) if x ∈ ∂i CΩ(Γ), then FCΩ(Γ)(x) = FΩ(x).

In joint work with A. Zimmer, we prove a key technical result concerning the Abelian subgroups of a
convex co-compact group [IZ21]. It is a convex projective analog of the well-known Flat Torus theorem in
CAT(0) geometry [BH99].

Theorem 2.25 (Convex Projective Flat Torus Theorem, [IZ21, Theorem 1.6]). Suppose that Γ ≤ Aut(Ω)
is a convex co-compact group. If A ≤ Γ is a maximal Abelian subgroup of Γ, then there exists a properly
embedded simplex S ⊂ CΩ(Γ) such that

(1) S is A-invariant,
(2) A acts co-compactly on S, and
(3) A fixes each vertex of S.

Moreover, A has a finite index subgroup isomorphic to Zdim(S).

3. Properly Convex Domains with Strongly Isolated Simplices

In this chapter, we will introduce a special class of properly convex domains called “properly convex
domains with strongly isolated simplices”. This definition is motivated by Hruska-Kleiner’s work on CAT(0)
spaces with isolated flats [HK05]. We will work with convex co-compact groups; recall the definition from
Section 2.6.

If Ω′ is a properly convex domain and S ⊂ Ω′ is a properly embedded simplex of dimension at least two,
then S is called maximal provided S is not properly contained in any other properly embedded simplex in
Ω′. If X ⊂ Ω, let diamΩ(X) := supx1,x2∈X dΩ(x1, x2).

Definition 3.1 ([IZ23, Definition 1.15], see Fig. 2). Suppose Γ ≤ Aut(Ω) is a convex co-compact group and
SΓ is the collection of all maximal properly embedded simplices in CΩ(Γ) of dimension at least two.

(1) We will say that S ⊂ SΓ is strongly isolated provided: for any r ≥ 0, there exists D(r) ≥ 0 such that
if S1, S2 ∈ S are distinct, then

diamΩ (NΩ(S1; r) ∩NΩ(S2; r)) ≤ D(r).

(2) We will say that (CΩ(Γ),dΩ) has strongly isolated simplices if SΓ is strongly isolated.

Observation 3.2. If S ⊂ SΓ is strongly isolated, then S is closed and discrete in the local Hausdorff topology
induced by dΩ.

Proof. See the proof of Proposition 3.3 part (1). □

Now we need to understand the geometric consequences of the property - “strongly isolated simplices”.

3.1. Geometric Properties: Proof of Theorem 1.5. In this section, we will prove the Theorem 1.5. It
establishes some key geometric properties of (CΩ(Γ),dΩ) with strongly isolated simplices where Γ ≤ Aut(Ω)
is convex co-compact. We will use this theorem in the next chapter for proving Theorem 1.4. We restate
Theorem 1.5 before beginning the proof.

Theorem 1.5 ([IZ23, Theorem 1.8]) Suppose Γ ≤ Aut(Ω) is a convex co-compact group and (CΩ(Γ),dΩ) has
strongly isolated simplices. Then

(1) Γ has finitely many orbits in SΓ.
(2) If S ∈ SΓ, then StabΓ(S) acts co-compactly on S and contains a finite index subgroup isomorphic to

Zk where k = dimS.
(3) If A ≤ Γ is an infinite Abelian subgroup of rank at least two, then there exists a unique S ∈ SΓ with

A ≤ StabΓ(S).
(4) If S ∈ SΓ and x ∈ ∂S, then FΩ(x) = FCΩ(Γ)(x) = FS(x).
(5) If S1, S2 ∈ SΓ are distinct, then #(S1 ∩ S2) ≤ 1 and ∂S1 ∩ ∂S2 = ∅.
(6) If ℓ ⊂ ∂i CΩ(Γ) is a non-trivial line segment, then there exists S ∈ SΓ with ℓ ⊂ ∂S.
(7) If x, y, z ∈ ∂i CΩ(Γ) form a half triangle in CΩ(Γ) (i.e. [x, y] ∪ [y, z] ⊂ ∂i CΩ(Γ) and (x, z) ⊂ CΩ(Γ)),

then there exists S ∈ SΓ such that x, y, z ∈ ∂S.
(8) If x ∈ ∂i CΩ(Γ) is not a C1-smooth point of ∂Ω, then there exists S ∈ SΓ with x ∈ ∂S.
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For the rest of this chapter, fix a properly convex domain Ω ⊂ P(Rd) and a convex co-compact subgroup
Γ ≤ Aut(Ω). Let SΓ denote the family of all maximal properly embedded simplices in CΩ(Γ) of dimension
at least two. For ease of notation, we set C := CΩ(Γ). The proof of Theorem 1.5 is split into the next few
sections in the following order:

□ parts (1)− (3) of is proven in Section 3.2,
□ part (5) is proven in Section 3.3,
□ part (4) is proven in Section 3.4
□ parts (6) and (7) are proven in Section 3.5, and
□ part (8) is proven in Section 3.6.

3.2. Maximal Simplices are Periodic. In this section we show that if (CΩ(Γ),dΩ) has strongly isolated
simplices, then each simplex S ∈ SΓ is periodic, i.e. StabΓ(S) acts co-compactly on S.

Proposition 3.3 ([IZ23, Proposition 8.1]). Suppose (C,dΩ) has strongly isolated simplices. Then the collec-
tion SΓ satisfies the following properties:

(1) SΓ is closed and discrete in the local Hausdorff topology.
(2) SΓ is a locally finite collection, that is, for any compact set K ⊂ Ω the set {S ∈ SΓ : S ∩K ̸= ∅} is

finite.
(3) Γ has finitely many orbits in S.
(4) If S ∈ SΓ, then StabΓ(S) acts co-compactly on S and contains a finite index subgroup isomorphic to

Zk where k = dimS.
(5) If A ≤ Γ is an infinite Abelian subgroup of rank at least two, then there exists a unique S ∈ SΓ with

A ≤ StabΓ(S).

We spend the rest of this section proving this proposition. The proofs are almost analogous to results in the
CAT(0) setting, see Wise [Wis96, Proposition 4.0.4], Hruksa [Hru05, Theorem 3.7], or Hruska-Kleiner [HK05,
Section 3.1].
(1) Suppose Sn is a sequence in SΓ that converges to S in the local Hausdorff topology. By Proposition 2.15,
S is a properly embedded simplex in Ω of dimension at least two. It is enough to show that Sn = S for n
large enough.

Fix ε > 0. Since SΓ is strongly isolated, there exists D(ε) ≥ 0 such that: if S1, S2 ∈ SΓ are distinct, then

diamΩ (NΩ(S1; ε) ∩NΩ(S2; ε)) ≤ D(ε).

Let rε := D(ε) + 1 and fix x ∈ S. Since Sn → S, there exists N0 ∈ N for all n ≥ N0,

dΩ
Hauss(Sn ∩ BΩ(x, rε), S ∩ BΩ(x, rε)) < ε.

Observe that there exists x1, x2 ∈ S such that (x1, x2) ⊂ S ∩ BΩ(x, rε) and dΩ(x1, x2) = rε. Thus, for any
m ̸= n ≥ N0,

(x1, x2) ⊂ NΩ(Sn; ε) ∩NΩ(Sm; ε).

Thus

diamΩ (NΩ(Sn; ε) ∩NΩ(Sm; ε)) ≥ rε > D(ε)

implying that Sm = Sn for all m,n ≥ N0. Thus Sn = S for all n large enough.
(2) Follows from part (1).
(3) Follows from part (2).
(4) Fix S ∈ SΓ and a compact set K ⊂ Ω. Let

X := {g ∈ Γ : S ∩ gK ̸= ∅}.

Then S = ∪g∈XS ∩ gK. Since (g−1S) ∩K ̸= ∅ when g ∈ X, Part (2) implies that the set

{g−1S : g ∈ X}

is finite. Since g−1S = h−1S if and only if gh−1 ∈ StabΓ(S) if and only if StabΓ(S)g = StabΓ(S)h, there
exists g1, . . . , gm ∈ X such that ⋃

g∈X

StabΓ(S)g =

m⋃
j=1

StabΓ(S)gj .
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Then the set K̂ := ∪m
j=1S ∩ gjK is compact and

StabΓ(S) · K̂ = ∪g∈XS ∩ gK = S.

So StabΓ(S) acts co-compactly on S.
It is now easy to show that StabΓ(S) contains a finite index subgroup isomorphic to Zdim(S).

(5) This is a straightforward application of the convex projective Flat Torus Theorem. Suppose Â ≥ A

is a maximal abelian subgroup containing A. By Theorem 2.25, there exists Ŝ ∈ SΓ such that Â acts co-

compactly on Ŝ. Thus A ≤ StabΓ(Ŝ). If A preserves another simplex, then it violates the strong isolation

property because A is infinite. Thus Ŝ is the unique properly embedded simplex preserved by A.

3.3. Intersections of Simplices. This result follows easily from the strong isolation property.

Proposition 3.4 ([IZ23, Section 12]). Suppose (C,dΩ) has strongly isolated simplices. If S1, S2 ∈ SΓ are
distinct, then #(S1 ∩ S2) ≤ 1 and ∂S1 ∩ ∂S2 = ∅.

Suppose x ̸= y ∈ S1 ∩ S2. Let (x1, y1) ⊂ S1 be the maximal projective line segment in S1 containing
[x, y]. By convexity, (x1, y1) ⊂ S1 ∩ S2. However diamΩ((x1, y1)) = ∞ which implies S1 = S2 since SΓ is a
strongly isolated. This is a contradiction.

For the second part, suppose y ∈ ∂S1 ∩ ∂S2. Let p1 ∈ S1 and p2 ∈ S2. By Proposition 2.11

dΩ
Hauss([p1, y), [p2, y)) ≤ R := dΩ(p1, p2).

Then,

[p1, y) ⊂ S1 ∩NΩ(S2;R).

As SΓ is strongly isolated, if S1 and S2 are distinct, then there exists D(R) ≥ 0 such that

diamΩ(NΩ(S1;R) ∩NΩ(S2;R)) ≤ D(R) < ∞.

But diamΩ(p1, y) = ∞. Thus S1 = S2, a contradiction.

3.4. Boundary Faces of Simplices. In this subsection, we will prove the following result about boundary
faces of simplices.

Proposition 3.5 ([IZ23]). Suppose (C,dΩ) has strongly isolated simplices. If S ∈ SΓ and x ∈ ∂S, then
FΩ(x) = FC(x) = FS(x).

Fix S ∈ SΓ and x ∈ ∂S. By Theorem 2.24 part (3), FΩ(x) = FC(x). So it is enough to show that
FS(x) = FC(x). Also observe that if dim(FC(x)) = 0, then FC(x) = FS(x) = {x} and the result is immediate.
So, without loss of generality, we can assume that dim(FC(x)) ≥ 1.

In order to prove this theorem, it is enough to show that ∂FC(x) ⊂ ∂FS(x). Indeed,

FC(x) = rel-int(ConvHullΩ(∂FC(x)))

and

FS(x) = rel-int(ConvHullΩ(∂FS(x))).

So, ∂FC(x) ⊂ ∂FS(x) implies that FC(x) ⊂ FS(x). On the other hand, FS(x) ⊂ FC(x) since S ⊂ C. This
shows that proving ∂FC(x) ⊂ ∂FS(x) is enough to prove the theorem.

In order to prove ∂FC(x) ⊂ ∂FS(x), we will require the following general result about convex co-compact
groups. Note that the following lemma does not require the assumption that SΓ is strongly isolated.

Lemma 3.6. Suppose w ∈ ∂i C with dim(FC(w)) ≥ 1 and w′ ∈ ∂i FC(w). For any r, ε > 0 and p ∈ C, there
exists N ≥ 0 such that: if y ∈ (w,w′) with dFΩ(w)(w, y) > N , then there exists py ∈ [p, y) such that whenever
q ∈ [py, y),

P(Span{w,w′, p}) ∩ BΩ(q, r) ⊂ NΩ(Sq; ε).

for some Sq ∈ SΓ.
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Proof of Lemma 3.6. Suppose this fails. Then there exist r, ε > 0 and p ∈ C such that: if n ≥ 1, there exist
yn ∈ (w,w′) with dFΩ(w)(w, yn) ≥ n and qn,m ∈ [p, yn) with limm→∞ qn,m = yn such that

P (Span{w,w′, p}) ∩ BΩ(qn,m, r) ̸⊂ NΩ(S; ε)(1)

for any properly embedded simplex S ∈ SΓ. By Proposition 2.2,

lim inf
m→∞

dΩ(qn,m, [p, w] ∪ [p, w′]) ≥ dFΩ(w)(yn, w) ≥ n.

Then for each n, we choose mn large enough such that

dΩ(qn,mn
, [p, w] ∪ [p, w′]) ≥ n.(2)

Set q′n := qn,mn .
Since Γ acts co-compactly on C, we can pass to a subsequence and choose γn ∈ Γ such that γnq

′
n → q′∞ ∈ C.

Up to passing to another subsequence, we can assume that

γnw
′, γnw, γnp, γnyn → w′

0, w0, p0, y∞ ∈ C.
By construction and by Equation (2),

[p0, w
′
0] ∪ [w′

0, w0] ∪ [w0, p0] ⊂ ∂i C.
But (p0, y∞) ⊂ C since q′∞ ∈ (p0, y∞) ∩ C. Thus,

S := rel-int (ConvHull{w0, w
′
0, p0})

is a properly embedded two dimensional simplex in C. Note that

Sn := rel-int (ConvHull{γnw, γnw′, γnp})
converges to S in the local Hausdorff topology. Thus, for n large enough,

dΩ
Hauss (BΩ(q

′
∞, r) ∩ S,BΩ(q

′
∞, r) ∩ Sn) < ε/2.

Since γnq
′
n → q′∞,

dΩ
Hauss(BΩ(q

′
∞, r),BΩ(γnq

′
n, r)) < ε/2

when n is large enough. Thus, for large enough n,

dΩ
Hauss (BΩ(q

′
∞, r) ∩ S,BΩ(γnq

′
n, r) ∩ Sn) < ε.

Since q′∞ ∈ S, this implies that

BΩ(q
′
n, r) ∩ γ−1

n Sn ⊂ NΩ(γ
−1
n S; ε).

Now observe that

BΩ(q
′
n, r) ∩ γ−1

n Sn = BΩ(q
′
n, r) ∩ P (Span{w,w′, p}) .

Thus, for n large enough,

BΩ(q
′
n, r) ∩ P (Span{w,w′, p}) ⊂ NΩ(γ

−1
n S; ε).

Let Ŝn ∈ SΓ be a maximal properly embedded simplex such that γ−1
n S ⊂ Ŝn. Thus,

BΩ(q
′
n, r) ∩ P (Span{w,w′, p}) ⊂ NΩ(Ŝn; ε)

This contradicts Equation (1) and concludes the proof of this lemma. □

Now we finish the proof of Proposition 3.5. We want to prove ∂FC(x) ⊂ ∂FS(x). Recall that dim(FC(x)) ≥
1 which implies that ∂FC(x) ̸= ∅. Let x′ ∈ ∂FC(x). We will show that x′ ∈ ∂FS(x).

Fix ε > 0. Since (C,dΩ) has strongly isolated simplices, there exists D(ε) ≥ 0 such that: if S1, S2 ∈ SΓ

are distinct, then

diamΩ (NΩ(S1; ε) ∩NΩ(S2; ε)) ≤ D(ε).(3)

Fix Rε := D(ε) + 1. Fix p ∈ S. Applying the above Lemma 3.6 with Rε, ε and p, we get N ≥ 0 which
satisfies the conclusions of the lemma. Choose y ∈ (x, x′) such that dFΩ(x)(x, y) > N . Then there exists
py ∈ [p, y) such that whenever q ∈ [py, y), there exists Sq ∈ SΓ such that

P(Span{x, x′, p}) ∩ BΩ(q, r) ⊂ NΩ(Sq; ε).
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Pick a sequence qn ∈ [py, y) with qn → y such that dΩ(qn, qn+1) = Rε for all n ≥ 1. There exist properly
embedded simplices Sn such that

P(Span{x, x′, p}) ∩ BΩ(qn, Rε) ⊂ NΩ(Sn; ε)

for all n ≥ 1. Then, for n ≥ 1,

(qn, qn+1) ⊂ BΩ(qn, Rε) ∩ BΩ(qn+1, Rε) ∩ P (Span{x, x′, p})
⊂ NΩ(Sn; ε) ∩NΩ(Sn+1; ε).

Thus

diamΩ (NΩ(Sn; ε) ∩NΩ(Sn+1; ε)) ≥ dΩ(qn, qn+1) = Rε > Dε.

Then Equation (3) implies that Sn = Sn+1 = S′ for all n ≥ 1. Thus,

[py, y) ⊂ NΩ(S
′; ε).(4)

Let px ∈ S be such that dΩ(px, py) = dΩ(py, S). Then Proposition 2.11 implies that

dΩ
Hauss([px, x), [py, y)) ≤ R0 := max{dΩ(px, py),dFΩ(x)(x, y)}.

Then equation (4) implies that

[px, x) ⊂ S ∩NΩ(S
′;R0 + ε),

that is, diamΩ(S ∩ NΩ(S
′;R0 + ε)) = ∞. This violates equation (3) unless S = S′. Thus, by equation (4),

[py, y) ⊂ NΩ(S; ε).

Then, by Corollary 2.3, there exists ay ∈ ∂S such that y ∈ FΩ(ay) and

dFΩ(y)(y, ay) = dFΩ(x)(y, ay) ≤ ε.

Note that this is true for any y ∈ (x, x′) with dFΩ(x)(x, y) > N (here N depends on ε, see Lemma 3.6). Thus,
for m ≥ 1, we can find a sequence ym ∈ (x, x′) and am ∈ ∂S with ym → x′ and dFΩ(x)(ym, am) < 1/m.
Then, by Corollary 2.4, limm→∞ am = x′. Thus, x′ ∈ ∂S ∩ ∂FΩ(x) = ∂FS(x). This finishes the proof.

3.5. Lines and Half Triangles in the Boundary.

Proposition 3.7 ([IZ23]). Suppose (C,dΩ) has strongly isolated simplices. If ℓ ⊂ ∂i C is a non-trivial line
segment, then there exists S ∈ SΓ with ℓ ⊂ ∂S.

Proof. We can assume that ℓ is an open line segment with x′ as one of its endpoints. Fix some x ∈ ℓ, that
is ℓ ⊂ FC(x). Then x′ ∈ ∂i FC(x). Now fix ε > 0 and p ∈ C. Since (C,dΩ) has strongly isolated simplices,
there exists D(ε) ≥ 0 such that: if S1, S2 ∈ SΓ are distinct, then

diamΩ (NΩ(S1; ε) ∩NΩ(S2; ε)) ≤ D(ε).(5)

Fix rε = D(ε) + 1. Applying Lemma 3.6 with rε, ε, and p, let N ≥ 0 be such that it satisfies the conclusions
of the lemma. Choose y ∈ ℓ with dFΩ(x)(x, y) > N . Then there exists py ∈ [p, y) such that: if q ∈ [py, y),
there exists Sq ∈ SΓ such that

P(Span{x, x′, p}) ∩ BΩ(q, rε) ⊂ NΩ(Sq; ε).

Pick a sequence qn ∈ [py, y) with qn → y such that dΩ(qn, qn+1) = rε. Let Sn ∈ SΓ be such that

P(Span{x, x′, p}) ∩ BΩ(qn, rε) ⊂ NΩ(Sn; ε).

Then

(qn, qn+1) ⊂ BΩ(qn, rε) ∩ BΩ(qn+1, rε) ∩ P (Span{x, x′, p})
⊂ NΩ(Sn; ε) ∩NΩ(Sn+1; ε).

Thus,

diamΩ (NΩ(Sn; ε) ∩NΩ(Sn+1; ε)) ≥ rε = D(ε) + 1 > D(ε)
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Then equation (5) implies that Sn = Sn+1 = S for all n ≥ 1. Then {qn : n ≥ 1} ⊂ NΩ(S; ε). Then
Corollary 2.3 implies that y ∈ FΩ(c) for some c ∈ ∂S. As c ∈ ∂S, Proposition 3.5 implies that FΩ(c) =
FS(c) ⊂ ∂S. Since y ∈ FΩ(x), this implies that

FΩ(x) = FΩ(y) = FΩ(c) ⊂ ∂S.

Finally, since ℓ ⊂ FΩ(x),

ℓ ⊂ ∂S. □

Proposition 3.8 ([IZ23]). Suppose (C,dΩ) has strongly isolated simplices. If x, y, z ∈ ∂i C form a half
triangle in C, then there exists S ∈ SΓ such that x, y, z ∈ ∂S.

Proof. By Proposition 3.7, there exist S1, S2 ∈ SΓ such that [x, y] ⊂ ∂S1 and [y, z] ⊂ ∂S2. Thus y ∈
∂S1 ∩ ∂S2. Then Proposition 3.4 implies that S1 = S2 = S. Hence x, y, z ∈ ∂S. □

3.6. Corners in the Boundary. A supporting hyperplane of Ω at z ∈ ∂Ω is a co-dimension one projective
subspace P(H) such that P(H)∩Ω = ∅ and z ∈ P(H)∩Ω. We will say that a point z ∈ ∂i C is not C1-smooth
if Ω does not have a unique supporting hyperplane at z. We will show that such a point is necessarily
contained in the boundary of a properly embedded simplex.

Proposition 3.9 ([IZ23]). Suppose (C,dΩ) has strongly isolated simplices. If z ∈ ∂i C is not a C1-smooth
point of ∂Ω, then there exists S ∈ SΓ with z ∈ ∂S.

In order to prove this, we first establish the following lemma about general convex co-compact subgroups.
Note that this lemma does not require that SΓ is strongly isolated.

Lemma 3.10 ([IZ23]). Suppose that z ∈ ∂i C is not a C1-smooth point of ∂Ω and q ∈ C. For any r > 0 and
ϵ > 0 there exists N > 0 such that: if p ∈ [q, z) with dΩ(q, p) > N , then there exists a properly embedded
simplex Sp ⊂ C of dimension at least two such that

BΩ(p; r) ∩ (z, q] ⊂ NΩ(Sp; ϵ).(6)

Proof. Fix r > 0 and ϵ > 0. Suppose for a contradiction that such a N does not exist. Then we can find
pn ∈ (z, q] such that limn→∞ pn = z and

BΩ(p, r) ∩ (z; q] ̸⊂ NΩ(S; ε)

for any properly embedded simplex S in C of dimension at least two.
We can find a 3-dimensional linear subspace V such that (z, q] ⊂ P(V ) and z ∈ ∂i C is not a C1-smooth

boundary point of P(V ) ∩ Ω. By changing coordinates we can suppose that

P(V ) = {[w : x : y : 0 : · · · : 0] : w, x, y ∈ R},
P(V ) ∩ Ω ⊂ {[1 : x : y : 0 : · · · : 0] : x ∈ R, y > |x|},

z = [1 : 0 : 0 : · · · : 0], and

q = [1 : 0 : 1 : 0 · · · : 0].

We may also assume that P(V ) ∩ Ω is bounded in the affine chart

{[1 : x : y : 0 : · · · : 0] : x, y ∈ R}.
Then

pn = [1 : 0 : yn : 0 : · · · : 0]
where 0 < yn < 1 and yn converges to 0. Let

Ln := {[1 : x : yn : 0 : · · · : 0] : x ∈ R} ∩ Ω.

By passing to a subsequence we can suppose that (yn)n≥1 is a decreasing sequence and

lim
n→∞

dΩ(pn, Ln−1) = ∞.(7)

Then

lim
n→∞

yn−1

yn
= ∞.
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Let an, bn ∈ ∂Ω be the endpoints of Ln = (an, bn). We claim that

lim
n→∞

dΩ

(
pn, (z, an−1)

)
= ∞ = lim

n→∞
dΩ

(
pn, (z, bn−1)

)
.(8)

Consider gn ∈ PGL(V ) defined by

gn([w : x : y : 0 : · · · : 0]) =
[
w :

1

yn
x :

1

yn
y : · · · : 0

]
.

Since (yn)n≥1 is a decreasing sequence converging to zero, Dn := gn(P(V ) ∩ Ω) is an increasing sequence of
properly convex domains in P(V ) and

D := ∪n≥1Dn ⊂ {[1 : x : y : 0 : · · · : 0] : x ∈ R, y > |x|}

is also a properly convex domain. Notice that dDn converges to dD uniformly on compact subsets of D.
Also, by construction, there exist t ≤ −1 and 1 ≤ s such that

D = {[1 : x : y : 0 : · · · : 0] : x ∈ R, y > max{sx, tx}}.

Then an = [1 : t−1
n yn : yn : 0 : . . . : 0] where tn → t.

Now pick vn ∈ (z, an−1) such that

dΩ

(
pn, (z, an−1)

)
= dΩ(pn, vn).

Since

lim
n→∞

gnan−1 = lim
n→∞

[
1 : t−1

n−1

yn−1

yn
:
yn−1

yn
: 0 : . . . : 0

]
= [0 : t−1 : 1 : 0 : · · · : 0]

any limit point of gnvn is in

{[0 : t−1 : 1 : 0 : · · · : 0]} ∪ {[1 : rt−1 : r : 0 : · · · : 0] : r ≥ 0} ⊂ ∂D.

Then

lim
n→∞

dΩ

(
pn, (z, an−1)

)
= lim

n→∞
dΩ(pn, vn) = lim

n→∞
dDn

(
gnpn, gnvn

)
= ∞

since gnpn → [1 : 0 : 1 : 0 : · · · : 0] ∈ D.
For the same reasons,

lim
n→∞

dΩ

(
pn, (z, bn−1)

)
= ∞.

This establishes Equation (8).
Next we can pass to a subsequence and find γn ∈ Γ such that γnpn → p∞ ∈ C. Passing to a further

subsequence we can suppose that γnan−1 → a∞, γnbn−1 → b∞, γnz → z∞, and γnq → q∞.
Equation (7) implies that [a∞, b∞] ⊂ ∂Ω and Equation (8) implies that

[z∞, a∞] ∪ [z∞, b∞] ⊂ ∂Ω.

Thus a∞, b∞, z∞ are the vertices of a properly embedded simplex S ⊂ Ω which contains p∞. Further, for n
sufficiently large we have

BΩ(γnpn, r) ∩ γn(z, q] ⊂ NΩ(S; ϵ)

and so

BΩ(pn, r) ∩ (z, q] ⊂ NΩ(γ
−1
n S; ϵ).

To obtain a contradiction we have to show that γ−1
n S ⊂ C for every n or equivalently that S ⊂ C. By

construction, q∞ ∈ ∂i C ∩ (a∞, b∞). Then Theorem 2.24 implies that

(a∞, b∞) ⊂ FΩ(q∞) = FC(q∞) ⊂ ∂i C.

Thus [a∞, b∞] ⊂ ∂i C. Since z∞ ∈ ∂i C and S has vertices a∞, b∞, z∞ we then see that S ⊂ C. □
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We now finish the proof of Proposition 3.9. The strategy is similar to the proof of Proposition 3.7. Fix
ε > 0 and q ∈ C. Since (C,dΩ) has strongly isolated simplices, there exists Dε ≥ 0 such that: if S1, S2 ∈ SΓ

are distinct, then

diamΩ (NΩ(S1; ε) ∩NΩ(S2; ε)) ≤ D(ε).(9)

Fix rε := D(ε) + 1. Applying the above Lemma 3.6 with rε, ε and q, we get N ≥ 0 which satisfies the
conclusions of the lemma. Pick a sequence zn ∈ [q, z) with zn → z, dΩ(zn, zn+1) = rε, and dΩ(q, zn) ≥ N
for n ≥ 1. Then, for each n ≥ 1, there exist Sn ∈ SΓ such that:

[q, z) ∩ BΩ(zn, rε) ⊂ NΩ(Sn; ε).

Then, if n ≥ 1,

(zn, zn+1) ⊂ BΩ(zn, rε) ∩ BΩ(zn+1, rε) ∩ [q, z)

⊂ NΩ(Sn; ε) ∩NΩ(Sn+1; ε).

Thus

diamΩ (NΩ(Sn; ε) ∩NΩ(Sn+1; ε)) ≥ dΩ(zn, zn+1) = rε > Dε.

Then Equation (9) implies that Sn = Sn+1 = S for all n ≥ 1. Thus {zn : n ∈ N} ⊂ NΩ(S; ε). Corollary
2.3 then implies that there exists c ∈ ∂S such that z ∈ FΩ(c). As c ∈ ∂S, Proposition 3.5 implies that
FΩ(c) = FS(c) ⊂ ∂S. Thus, z ∈ ∂S.

4. Relative Hyperbolicity, Convex Co-compactness, and Strongly Isolated Simplices

This section is devoted to the proof of Theorem 1.4 which we now restate.

Theorem 1.4.([IZ23, Theorem 1.7]) Suppose Ω ⊂ P(Rd) is a properly convex domain, Γ ≤ Aut(Ω) is
a convex co-compact group, and SΓ is the family of all maximal properly embedded simplices in CΩ(Γ) of
dimension at least two. Then the following are equivalent:

(1) (CΩ(Γ),dΩ) has strongly isolated simplices,
(2) (CΩ(Γ),dΩ) is a relatively hyperbolic space with respect to SΓ,
(3) Γ is a relatively hyperbolic group with respect to a collection of virtually Abelian subgroups of rank

at least two.

The most difficult part of the proof is (1) implies (2). This is done in Section 4.2. For this proof, we
rely on Sisto’s characterization of relative hyperbolicity (cf. Theorem A.8). A key ingredient of this proof
is the notion of closest-point projection onto properly embedded simplices in CΩ(Γ) (cf. Definition 2.6) and
its comparison with linear projections on simplices (cf. Definition 2.18). Results proven in Section 4.1 play
a key role in Section 4.2.

The proof of (3) implies (1) is also quite involved since we have to prove that CΩ(Γ) is relatively hyperbolic
with respect to the collection of all simplices in SΓ. This is done in Section 4.5. The rest of the parts of the
proof of Theorem 1.4 is also in this section.

4.1. Closest-point Projections on Simplices. For the rest of this section fix a convex co-compact group
Γ ≤ Aut(Ω). Set C := CΩ(Γ) and S := SΓ. We will assume that (CΩ(Γ),dΩ) has strongly isolated simplices
for rest of this section.

Suppose S is a properly embedded simplex in C. Since S is a closed convex subset, we can follow Definition
2.6 and define the closest-point projection onto S. We will denote it by πS . On the other hand, if H is a
set of S-supporting hyperplanes, then we have a notion of linear projection onto S which we will denote by
LS,H, see Definition 2.18.

We will establish a coarse equivalence between the two projections. But first we need a continuity lemma
for linear projections.

Lemma 4.1 ([IZ23, Lemma 13.4]). If S ∈ SΓ, then the map

(L, x) ∈ LS × C → L(x) ∈ S

is continuous.
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Proof. We first show that P(kerL) ∩ C = ∅ for all L ∈ LS . Suppose for a contradiction that L ∈ LS and

x ∈ P(kerL) ∩ C.

Proposition 2.17 implies that x ∈ ∂i C. Then Proposition 2.19 implies that [y, x] ⊂ ∂i C for every y ∈ ∂S. Next
fix y1, y2 ∈ ∂S such that (y1, y2) ⊂ S. Then y1, x, y2 form a half triangle. By Theorem 1.5, y1, x, y2 ∈ ∂S for
some S ∈ SΓ. Since x ∈ ∂S ⊂ Span(S), x ̸∈ kerL, a contradiction.

Thus P(kerL) ∩ C = ∅ for all L ∈ LS .
Now suppose that limn→∞(Ln, xn) = (L, x) in LS × C. Let x̃n, x̃ denote lifts of xn, x respectively such

that limn→∞ x̃n = x̃. Then

L(x̃) = lim
n→∞

Ln(x̃n) ∈ Rd.

Since P(kerL) ∩ C = ∅, we have L(x̃) ̸= 0. So

L(x) = [L(x̃)] = lim
n→∞

[Ln(x̃n)] = lim
n→∞

Ln(xn). □

Now the proof of equivalence.

Proposition 4.2 ([IZ23, Proposition 13.7]). There exists δ1 ≥ 0 such that: if S ∈ S, H is a set of S-
supporting hyperplanes, and x ∈ C, then

max
p∈πS(x)

dΩ(LS,H(x), p) ≤ δ1.

Proof. Since S has finitely many Γ orbits (see Proposition 3.3), it is enough to prove the result for some
fixed S ∈ S.

Suppose the proposition is false. Then, for every n ≥ 0, there exist xn ∈ C, a set of S-supporting
hyperplanes Hn, and pn ∈ πS(xn) such that

dΩ(pn, LS,Hn
(xn)) ≥ n.

Letmn be the midpoint of the projective line segment [pn, LS,Hn
(xn)] in the Hilbert distance. Since StabΓ(S)

acts co-compactly on S (see Proposition 3.3), translating by elements of StabΓ(S) and passing to a subse-
quence, we can assume that m := limn→∞ mn exists in S. Passing to a further subsequence and using
Proposition 2.21, we can assume that there exists x, p, x′ ∈ ∂i C and LS,H ∈ LS where x := limn→∞ xn,
p := limn→∞ pn, x

′ := limn→∞ LS,Hn(xn), and LS,H := limn→∞ LS,Hn . By Lemma 4.1,

LS,H(x) = lim
n→∞

LS,Hn
(xn) = x′.

We first show that [x′, x] ⊂ ∂i C. Observe that LS,H(v) = x′ for all v ∈ [x′, x] since LS,H is linear and
LS,H(x′) = x′ = LS,H(x). But LS,H(Ω) = S, implying [x′, x] ∩ Ω = ∅. Hence,

[x′, x] ⊂ ∂i C.

Next we show that [p, x] ⊂ ∂i C. Suppose not, then (p, x) ⊂ C. Choose any v ∈ (p, x) ∩ C and a sequence
vn ∈ [pn, xn] such that v = limn→∞ vn. Since p ∈ ∂i C and v ∈ C,

lim
n→∞

dΩ(vn, pn) = ∞.

Fix any vS ∈ S. Then, choosing n large enough so that dΩ(vn, pn) ≥ 2 + dΩ(v, vS) and dΩ(v, vn) ≤ 1,

dΩ(xn, vS) ≤ dΩ(xn, vn) + dΩ(vn, v) + dΩ(v, vS)

= dΩ(xn, pn)− dΩ(pn, vn) + dΩ(vn, v) + dΩ(v, vS)

≤ dΩ(xn, pn)− 1,

which is a contradiction since pn ∈ πS(xn). Hence, [p, x] ⊂ ∂i C.
Thus, [p, x] ∪ [x, x′] ⊂ ∂i C and by construction, m ∈ (p, x) ⊂ C. Thus the three points p, x, x′ form half

triangle in C. Then Theorem 1.5 part (7) implies that p, x, x′ ∈ ∂S for some S ∈ SΓ. Then x′ = LS,H(x) = x
which implies [p, x] = [p, x′] ⊂ ∂i C. This is a contradiction since (p, x) ⊂ C by construction. □

The next result proves δ-slimness of some special triangles built using linear projections.
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Proposition 4.3 ([IZ23, Proposition 13.9]). There exists δ2 ≥ 0 such that: if x ∈ C, S ∈ S, z ∈ S, and H
is a set of S-supporting hyperplanes, then the geodesic triangle[

x, z
]
∪
[
z, LS,H(x)

]
∪
[
LS,H(x), x

]
is δ2-thin.

Proof. Since S has finitely many Γ orbits (see Proposition 3.3), it is enough to prove the result for some
fixed S ∈ S. By [IZ23, Lemma 13.8], it is enough to show that there exists δ2 ≥ 0 such that

[LS,H(x), z] ⊂ Nδ2/2([z, x] ∪ [x, LS,H(x)])

for all x ∈ C, z ∈ S, and H a set of S-supporting hyperplanes.
Suppose such a δ2 does not exist. Then, for every n ≥ 0, there exist zn ∈ S, a set of S-supporting

hyperplanes Hn, pn := LS,Hn(xn), and un ∈ [zn, pn] such that

dΩ(un, [zn, xn] ∪ [xn, pn]) ≥ n.

Since StabΓ(S) acts co-compactly on S, translating by elements of StabΓ(S) and passing to a subsequence,
we can assume that u := limn→∞ un exists and u ∈ S. Passing to a further subsequence and using Proposition
2.21, we can assume there exist x, z, p ∈ C and LS,H ∈ LS where x := limn→∞ xn, z := limn→∞ zn,
p := limn→∞ pn, and LS,H := limn→∞ LS,Hn . Since

lim
n→∞

dΩ(u, [xn, zn] ∪ [xn, pn])

≥ lim
n→∞

(
dΩ(un, [xn, zn] ∪ [xn, pn])− dΩ(u, un)

)
= ∞,

we have
[x, z] ∪ [x, p] ⊂ ∂i C.

By construction, u ∈ (p, z) ⊂ C. Thus, p, x, z form a half triangle in C.
By Theorem 1.5 part (7), p, x, z ∈ ∂S for some S ∈ SΓ. Lemma 4.1 then implies that

p = lim
n→∞

pn = lim
n→∞

LS,Hn
(xn) = LS,H(x) = x.

Thus [p, z] = [p, x] ⊂ ∂i C which is a contradiction since (p, z) ⊂ C by construction. □

Let δ1 and δ2 be the constants as in Propositions 4.2 and 4.3.

Proposition 4.4 ([IZ23, Proposition 13.10]). Set δ3 := δ1+3δ2. If x ∈ C, S ∈ S, H is a set of S-supporting
hyperplanes, and z ∈ S, then dΩ

(
LS,H(x), [x, z]

)
≤ δ3.

Proof. By Proposition 4.3, the geodesic triangle

[x, z] ∪ [z, LS,H(x)] ∪ [LS,H(x), x]

is δ2-thin. Thus, there exist y ∈ [LS,H(x), z], y1 ∈ [x, LS,H(x)], and y2 ∈ [x, z] such that dΩ(y, y1) ≤ δ2 and
dΩ(y, y2) ≤ δ2.

We claim that dΩ(LS,H(x), y1) ≤ δ1 + δ2. Choose any p ∈ πS(x). Since [LS,H(x), z] ⊂ S,

dΩ(x, p) = dΩ(x, S) ≤ dΩ(x, y).

Then, using Proposition 4.2,

dΩ(x, LS,H(x)) ≤ dΩ(x, p) + dΩ(p, LS,H(x)) ≤ dΩ(x, y) + δ1.

Then,

dΩ(LS,H(x), y1) = dΩ(LS,H(x), x)− dΩ(y1, x)

≤ dΩ(x, y) + δ1 − dΩ(y1, x)

≤ dΩ(y, y1) + δ1 ≤ δ2 + δ1.

Hence,

dΩ(LS,H(x), [x, z]) ≤ dΩ(LS,H(x), y2)

≤ dΩ(LS,H(x), y1) + dΩ(y1, y) + dΩ(y, y2)

≤ δ1 + 3δ2 = δ3. □
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Our next goal is to prove if the distance between the linear projections of two points onto a simplex
S ∈ S is large, then the geodesic between the two points spends a significant amount of time in a tubular
neighborhood of S. This is accomplished in Corollary 4.6 using the next result.

Proposition 4.5 ([IZ23, Proposition 13.11]). There exists a constant δ4 ≥ 0 such that: if S ∈ S, H is a set
of S-supporting hyperplanes, x, y ∈ C, and dΩ(LS,H(x), LS,H(y)) ≥ δ4, then

dΩ(LS,H(x), [x, y]) ≤ δ4 and dΩ(LS,H(y), [x, y]) ≤ δ4.

Proof. Observe that the linear projections are Γ-equivariant, that is,

LgS,gH ◦ g = g ◦ LS,H

for any g ∈ Γ, S ∈ S, and H a set of S-supporting hyperplanes. Moreover, by Proposition 3.3 there are only
finitely many Γ-orbits in S. Thus, it is enough to prove this proposition for a fixed S ∈ S.

Suppose the proposition is false. Then, for every n ≥ 0, there exist xn, yn ∈ C and a set of S-supporting
hyperplanes Hn with

dΩ(LS,Hn
(xn), LS,Hn

(yn)) ≥ n

and

dΩ(LS,Hn(xn), [xn, yn]) ≥ n.

Let an := LS,Hn
(xn) and bn := LS,Hn

(yn). Then pick cn ∈ [an, bn] such that

(10) dΩ(cn, an) = n/2.

Then,

(11) dΩ(cn, bn) ≥ dΩ(an, bn)− dΩ(cn, an) ≥ n/2

and

(12) dΩ

(
cn, [xn, yn]

)
≥ dΩ

(
an, [xn, yn]

)
− dΩ(cn, an) ≥ n/2.

Since StabΓ(S) acts co-compactly on S (see Proposition 3.3), translating by elements of StabΓ(S) and
passing to a subsequence, we may assume that c := limn→∞ cn exists and c ∈ S. After taking a further
subsequence, we can assume that the following limits exist in C: a := limn→∞ an, b := limn→∞ bn, x :=
limn→∞ xn and y := limn→∞ yn.

We now observe that a, b, x, y ∈ ∂i C. Equation (10) and (11) imply that a, b ∈ ∂i C. Equation (12) implies
that [x, y] ⊂ ∂i C.

We claim that x ∈ FΩ(a) and y ∈ FΩ(b). Since cn ∈ S, by Proposition 4.4, there exists a′n ∈ [xn, cn] such
that dΩ(an, a

′
n) ≤ δ3. Up to passing to a subsequence, we can assume that a′ := limn→∞ a′n exists in C.

Observe that a′ ∈ ∂i C since

lim
n→∞

dΩ(a
′
n, c) ≥ lim

n→∞

(
dΩ(an, cn)− dΩ(cn, c)− dΩ(an, a

′
n)
)
= ∞.

Since a′n ∈ [xn, cn],

a′ ∈ ∂i C ∩ [x, c] = {x}.

Thus, limn→∞ a′n = x. Since limn→∞ an = a and dΩ(an, a
′
n) ≤ δ3, Proposition 2.2 implies that x ∈ FΩ(a).

Similar reasoning shows that y ∈ FΩ(b).
Since [x, y] ⊂ ∂i C, Proposition 2.1 part (4) implies that [a, b] ⊂ ∂i C. This is a contradiction since c ∈

(a, b) ∩ C ̸= ∅. □

Corollary 4.6 ([IZ23, Corollary 13.12]). If S ∈ S, H is a set of S-supporting hyperplanes, R > 0, x, y ∈ C,
and dΩ(LS,H(x), LS,H(y)) ≥ R+ 2δ4, then:

(1) there exists [x0, y0] ⊂ [x, y] such that [x0, y0] ⊂ NΩ(S; δ4),
(2)

[
LS,H(x), LS,H(y)

]
⊂ NΩ

(
[x, y]; δ4

)
, and,

(3) diamΩ

(
NΩ(S; δ4) ∩ [x, y]

)
≥ R.
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Proof. Since dΩ(LS,H(x), LS,H(y)) > δ4, Proposition 4.5 implies that there exists x0, y0 ∈ [x, y] such that

dΩ(LS,H(x), x0) ≤ δ4 and dΩ(LS,H(y), y0) ≤ δ4.

By Proposition 2.11,

dΩ
Hauss

([
x0, y0

]
,
[
LS,H(x), LS,H(y)

])
≤ δ4

and, by convexity, [LS,H(x), LS,H(y)] ⊂ S. This proves parts (1) and (2). To prove part (3), observe that

dΩ(x0, y0) ≥ dΩ
(
LS,H(x), LS,H(y)

)
− dΩ(LS,H(x), x0)− dΩ(LS,H(y), y0)

≥ R.

Then, diamΩ

(
NΩ(S; δ4) ∩ [x, y]

)
≥ dΩ(x0, y0) ≥ R. □

4.2. Strongly Isolated Simplices implies Relative Hyperbolicity. For the rest of this section fix a
convex co-compact group Γ ≤ Aut(Ω) for which (CΩ(Γ),dΩ) has strongly isolated simplices. Set C := CΩ(Γ)
and S := SΓ .

We will prove that (1) =⇒ (2) in Theorem 1.4, that is, (C,dΩ) is a relatively hyperbolic space with
respect to SΓ. Since (C,dΩ) has strongly isolated simplices, the results of Section 4.1 hold. For each S ∈ S,
fix a set HS of S-supporting hyperplanes. Consider the family of projection maps

ΠS := {LS,H : S ∈ S,H = HS}

and the geodesic path system

G := {[x, y] : x, y ∈ C}
on C. By Theorem A.8, it is enough to verify that ΠS is an almost projection system and that S is
asymptotically transverse-free relative to G. We complete this in the next two subsections (cf. 4.3 and 4.4).

4.3. ΠS is an Almost Projection System. Let δ3 be the constant in Proposition 4.4.

Lemma 4.7 ([IZ23, Lemma 13.13]). If S ∈ S, H a set of S-supporting hyperplanes, x ∈ C, and z ∈ S, then

dΩ(x, z) ≥ dΩ(x, LS,H(x)) + dΩ(LS,H(x), z)− 2δ3.

Proof. By Proposition 4.4, there exists q ∈ [x, z] such that dΩ(LS,H(x), q) ≤ δ3. Then,

dΩ(x, z) = dΩ(x, q) + dΩ(q, z) ≥ dΩ(x, LS,H(x)) + dΩ(LS,H(x), z)− 2δ3. □

Lemma 4.8 ([IZ23, Lemma 13.14]). There exists a constant δ5 ≥ 0 such that: if S ̸= S′ ∈ S and H is a set
of S-supporting hyperplanes, then

diamΩ(LS,H(S′)) ≤ δ5.

Proof. Since S is strongly isolated, for every r > 0 there exists D(r) > 0 such that

(13) diamΩ

(
NΩ

(
S1; r

)
∩NΩ

(
S2, r

))
≤ D(r)

for all S1, S2 ∈ S distinct.
Let δ4 be the constant in Proposition 4.5. Set δ5 := D

(
δ4
)
+ 2δ4 + 1. Fix x, y ∈ S′ and suppose for a

contradiction that dΩ(LS,H(x), LS,H(y)) ≥ δ5. Then, by Corollary 4.6,

diamΩ

(
NΩ(S; δ4) ∩ S′

)
≥ diamΩ

(
NΩ(S; δ4) ∩ [x, y]

)
≥ D(δ4) + 1.

which contradicts Equation (13). □

Let δ1 and δ4 be the constants in Proposition 4.2 and 4.5 respectively.

Lemma 4.9 ([IZ23, Lemma 13.15]). If x ∈ C, S ∈ S, H is a set of S-supporting hyperplanes, and R :=
dΩ(x, S), then

diamΩ

(
LS,H

(
BΩ(x,R) ∩ C

))
≤ 8(δ4 + δ1).
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Proof. Fix y ∈ BΩ(x,R) ∩ C. We claim that

dΩ(LS,H(x), LS,H(y)) ≤ 4(δ4 + δ1).

It is enough to consider the case when dΩ(LS,H(x), LS,H(y)) ≥ δ4. Then by Proposition 4.5, there exists
x′ ∈ [x, y] such that dΩ(LS,H(x), x′) ≤ δ4. By Proposition 4.2,

dΩ(x, y) ≤ R = dΩ(x, πS(x)) ≤ dΩ(x, LS,H(x)) + δ1.

Then,

dΩ(x
′, y) = dΩ(x, y)− dΩ(x, x

′) ≤ dΩ(x, LS,H(x))− dΩ(x, x
′) + δ1

≤ dΩ(LS,H(x), x′) + δ1

≤ δ4 + δ1.

Thus,
dΩ(LS,H(x), y) ≤ dΩ(LS,H(x), x′) + dΩ(x

′, y) ≤ 2δ4 + δ1.

Since LS,H(x) ∈ S, using Proposition 4.2 again,

dΩ(y, LS,H(y)) ≤ dΩ(y, πS(y)) + δ1 ≤ dΩ(y, LS,H(x)) + δ1

≤ 2(δ4 + δ1).

Finally

dΩ(LS,H(x), LS,H(y)) ≤ dΩ(LS,H(x), x′) + dΩ(x
′, y) + dΩ(y, LS,H(y))

≤ 4(δ4 + δ1). □

4.4. S is Asymptotically Transverse-free relative to G. This section is essentially the proof of [IZ23,
Theorem 13.16]. Let δ4 be the constant in Proposition 4.5. We will show that exists Γ > 0 such that for
each ∆ ≥ 1 and κ ≥ 2δ4 the following holds: if T ⊂ C is a geodesic triangle whose sides are in G and is
S-almost-transverse with constants κ and ∆, then T is (Γ∆)-thin.

Suppose such a Γ > 0 does not exist. Then, for every n ≥ 1, there exist κn ≥ 2δ4, ∆n ≥ 1, and a
S-almost-transverse triangle Tn ⊂ C with constants κn and ∆n such that Tn is not (n∆n)-thin. Let an, bn,
and cn be the vertices of Tn, labeled in a such a way that there exists un ∈ [an, bn] ⊂ Tn with

(14) dΩ

(
un, [an, cn] ∪ [cn, bn]

)
> n∆n ≥ n.

Then the geodesic triangles Tn are also S-almost-transverse with constants 2δ4 and ∆n since κn ≥ 2δ4.
Since Γ acts co-compactly on C, translating by elements of Γ and passing to a subsequence, we can

assume that u := limn→∞ un exists and u ∈ C. By passing to a further subsequence, we can assume that
a := limn→∞ an, b := limn→∞ bn, and c := limn→∞ cn exist in C. By Equation (14),

[a, c] ∪ [c, b] ⊂ ∂i C
whereas, by construction, u ∈ (a, b) ⊂ C. Thus, the points a, b, c form a half triangle. Then, by Theorem 1.5
part (7), there exists S ∈ SΓ such that a, b, c ∈ ∂S.

Fix a set of S-supporting hyperplanes H. Let a′n := LS,H(an), b′n := LS,H(bn), and c′n := LS,H(cn).
Up to passing to a subsequence, we can assume that the limits a′ := limn→∞ a′n, b′ := limn→∞ b′n and
c′ := limn→∞ c′n exist. By Lemma 4.1,

a′ = lim
n→∞

LS,H(an) = LS,H(a) = a.

Similarly, b′ = b and c′ = c.
Since a, b, c form a half triangle, the faces FΩ(a

′), FΩ(b
′), and FΩ(c

′), are pairwise disjoint. Then, by
Proposition 2.2,

lim
n→∞

dΩ(a
′
n, b

′
n) = ∞.

Thus, for n large enough, Corollary 4.6 part (2) and part (3) implies

(15) [a′n, b
′
n] ⊂ NΩ([an, bn]; δ4)

and

(16) diamΩ

(
NΩ(S; δ4) ∩ [an, bn]

)
≥ dΩ(a

′
n, b

′
n)− 2δ4.
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Since Tn is S-almost-transverse with constants 2δ4 and ∆n, by Equation (16),

(17) dΩ(a
′
n, b

′
n) ≤ ∆n + 2δ4.

Similarly, for n large enough,

[b′n, c
′
n] ⊂ NΩ([bn, cn]; δ4) and dΩ(b

′
n, c

′
n) ≤ ∆n + 2δ4(18)

[c′n, a
′
n] ⊂ NΩ([cn, an]; δ4) and dΩ(c

′
n, a

′
n) ≤ ∆n + 2δ4.(19)

Let mab
n , mbc

n , and mca
n be the Hilbert distance midpoints of [a′n, b

′
n], [b

′
n, c

′
n], and [c′n, a

′
n] respectively. By

Equations (15), (18), and (19), there exists wab
n , wbc

n , and wca
n in [an, bn], [bn, cn], and [cn, an] respectively

such that:

dΩ(w
ab
n ,mab

n ) ≤ δ4, dΩ(w
bc
n ,mbc

n ) ≤ δ4, and dΩ(w
ca
n ,mca

n ) ≤ δ4.

Then,

dΩ(w
ab
n , wbc

n ) ≤ dΩ(w
ab
n ,mab

n ) + dΩ(m
ab
n ,mbc

n ) + dΩ(m
bc
n , wbc

n )

≤ δ4 + dΩ(m
ab
n , b′n) + dΩ(b

′
n,m

bc
n ) + δ4

= 2δ4 +
dΩ(a

′
n, b

′
n) + dΩ(b

′
n, c

′
n)

2
≤ 4δ4 +∆n (by Equations (17) and (18))

Similarly,

(20) dΩ(w
bc
n , wca

n ) ≤ ∆n + 4δ4 and dΩ(w
ca
n , wab

n ) ≤ ∆n + 4δ4.

Then, for n large enough, the triangles Tn are (∆n + 4δ4)-thin, since

dΩ
Hauss

(
[an, w

ab
n ], [an, w

ca
n ]

)
≤ ∆n + 4δ4,

dΩ
Hauss

(
[bn, w

bc
n ], [bn, w

ab
n ]

)
≤ ∆n + 4δ4, and

dΩ
Hauss

(
[cn, w

ca
n ], [cn, w

bc
n ]

)
≤ ∆n + 4δ4.

Since ∆n ≥ 1, we have ∆n +4δ4 ≤ (1+ 4δ4)∆n. Thus, for n large enough, Tn is (Γ∆n)-thin for Γ := 1+4δ4,
which contradicts the assumption that Tn is not (n∆n)-thin.

4.5. Proof of Theorem 1.4. For the rest of the section suppose that Γ ≤ Aut(Ω) is a convex co-compact
group. Set C := CΩ(Γ) and let SΓ be the family of all maximal properly embedded simplices in C of dimension
at least two.
(1) implies (2). See Section 4.2.
(2) implies (1). This follows from Theorem A.5 part (1).
(1) and (2) implies (3). Suppose (C,dΩ) is relatively hyperbolic with respect to SΓ. Equivalence of (1)
and (2) implies that (C,dΩ) has strongly isolated simplices. Then, by Theorem 1.5 part (1), there exists
m ∈ N such that

SΓ = ⊔m
i=1Γ · Si.(21)

Theorem 1.5 part (2) implies that for each i ∈ {1, . . . ,m}, there exists an Abelian subgroup Ai ≤ Γ of rank
at least two such that Ai acts co-compactly on Si. We will show that Γ is a relatively hyperbolic group with
respect to the subgroups {A1, . . . , Am}.

Fix p ∈ C. Since Γ acts co-compactly on C, Milnor-Švarc lemma implies that the orbit map F : (Γ,dS) →
(C,dΩ) defined by F (g) = g · p is a quasi-isometry . Here dS is a word metric on Γ obtained by fixing a finite
generating set S of Γ.

Since Ai acts co-compactly on Si for 1 ≤ i ≤ m, there exists R > 0 such that

sup
g∈Γ

sup
1≤i≤m

dΩ
Hauss(gAi · p, gSi) ≤ R.

Then equation (21) implies that up to modifying the map F by a bounded quantity determined by R, we
can assume that

F ({gAi : g ∈ Γ, 1 ≤ i ≤ m}) = SΓ .



22 MITUL ISLAM

Then by Proposition A.4, (Γ,dS) is a relatively hyperbolic space with respect to the collection of left cosets
{gAi : g ∈ Γ, 1 ≤ i ≤ m}. This completes the proof.

(3) implies (2). Suppose that Γ is a relatively hyperbolic group with respect to a collection of subgroups
{H1, . . . ,Hk} each of which is a virtually Abelian group of rank at least two. For each 1 ≤ j ≤ k, let Aj ≤ Hj

be a finite index Abelian subgroup with rank at least two. Then, by definition, Γ is a relatively hyperbolic
group with respect to {A1, . . . , Ak}.

Fix some x0 ∈ Ω and consider the orbit map F : (Γ,dΓ) → (C,dΩ) defined by F (g) = g · x0. By Milnor-
Švarc lemma, F is a quasi-isometry. Let G : C → Γ be a quasi-inverse. Fix a word metric dΓ on Γ. We will
use the following notation: if U ⊂ Γ and r > 0, let

NΓ(U ; r) := {g ∈ Γ : dΓ(g, U) < r}

and diamΓ(U) = sup{dΓ(g1, g2) : g1, g2 ∈ U}.
For each 1 ≤ j ≤ k, let Âj be a maximal Abelian subgroup of Γ that contains Aj . By Theorem 2.25,

there exists a properly embedded simplex Sj ⊂ C such that Âj ≤ StabΓ(Sj), Âj acts co-compactly on Sj ,

and Âj has a finite index subgroup isomorphic to Zdim(Sj). Since Aj (and hence Âj) has rank at least two,
this implies that dimSj ≥ 2.

Claim 4.10. (C,dΩ) is a relatively hyperbolic space with respect to

S0 := {gSj : g ∈ Γ, 1 ≤ j ≤ k}.

Proof of Claim. We claim that Aj ≤ Âj has finite index and hence Aj also acts co-compactly on Sj . By
Observation 2.12, the metric space (Sj ,dΩ) is quasi-isometric to RdimSj . So, by the fundamental lemma

of geometric group theory [BH99, Chapter I, Proposition 8.19], (Âj ,dΓ) is also quasi-isometric to RdimSj .
Since dimSj ≥ 2, Theorem A.5 part (2) implies that there exists r1 > 0, gj ∈ Γ, and 1 ≤ ij ≤ k such that

Âj ⊂ NΓ(gjAij ; r1).

Then

diamΓ

(
NΓ(gjAij ; r1) ∩NΓ(Aj ; r1)

)
≥ diamΓ (Aj) = ∞.

So Theorem A.5 part (1) implies that gjAij = Aj . Then,

Âj ⊂ NΓ(Aj ; r1)

and hence Aj ≤ Âj has finite index.
Then, using the fact that Aj acts co-compactly on Sj , there exists r2 > 0 such that F (gAj) ⊂ NΩ(gSj ; r2)

and G(gSj) ⊂ NΓ(gAj ; r2), for all g ∈ Γ and 1 ≤ j ≤ k. Then, by Theorem A.5 part (3), (C,dΩ) is relatively
hyperbolic with respect to S0. □

In order to finish the proof, we will now show that S0 = SΓ.
We first show that S0 ⊂ SΓ. Suppose S ∈ S0 is properly contained in a maximal properly embedded

simplex S′. Then, by Theorem A.5 part (2), there exists S′′′ ∈ S0 such that

S ⊂ S′ ⊂ NΩ(S
′′′;M).

This implies that diamΩ(NΩ(S
′′′;M) ∩ NΩ(S;M)) = ∞. Then Theorem A.5 part (1) implies that S′′′ = S,

i.e. S′ ⊂ NΩ(S;M). Hence, dim(S′) ≤ dim(S) which is a contradiction since S′ properly contains S.
For proving SΓ ⊂ S0, we first need the following claim.

Claim 4.11. If S ∈ S0 and x ∈ ∂S, then FΩ(x) = FC(x) = FS(x).

Proof of Claim. Fix S ∈ S0. Recall that since Γ is a convex co-compact subgroup, FΩ(x
′) = FC(x

′) for any
x′ ∈ ∂i C. Then, as in the proof of Proposition 3.5, if x ∈ ∂S, then the claim fails only when

∂FS(x) ⫋ ∂FC(x).

We will prove that ∂FS(x) = ∂FC(x) by induction on dim(FS(x)).
Base case: dim(FS(x)) = 0.
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Then x is a vertex of S. Suppose the claim fails, i.e. ∂FS(x) ⫋ ∂FC(x). Let w0 ∈ ∂FC(x) \ FS(x). Then

(w0, x) ∩ S = ∅. Otherwise, if there was x′′ ∈ (w0, x) ∩ S, then Observation 2.13 would imply that

FS(x
′′) = S ∩ FΩ(x

′′) = S ∩ FΩ(x) = FS(x) = {x},

that is x′′ = x, a contradiction.
Then, we fix w ∈ (w0, x) ⊂ FΩ(x) such that M + 1 ≤ dFΩ(x)(w, x). Set Rw := dFΩ(x)(w, x). Let us

label the vertices of S as v1, . . . , vm where m = dim(S) + 1 and v1 = x. By Proposition 2.14, S′ :=

ConvHullΩ(w, v2, . . . , vm) is a properly embedded simplex in C such that dΩ
Hauss(S′, S) ≤ Rw. Observe that

S′ ̸⊂ NΩ(S;M).

Indeed, if S′ ⊂ NΩ(S;M), then applying Corollary 2.3 to w ∈ ∂S′, we get s ∈ ∂S such that w ∈ FΩ(s) and
dFΩ(s)(w, s) ≤ M . Since w ∈ FΩ(x), this implies that x ∈ FΩ(s). Since x, s ∈ ∂S and x is a vertex of S,
s = x. Thus dFΩ(x)(w, x) ≤ M , a contradiction.

Then, by Theorem A.5 part (2), there exists S1 ̸= S ∈ S0 such that S′ ⊂ NΩ(S1;M). Then we have

S′ ⊂ NΩ(S;Rw) ∩N (S1;M)

which implies that diamΩ(NΩ(S;Rw) ∩ N (S1; 2M)) = ∞ for distinct S, S1 ∈ S0. This contradicts Theorem
A.5 part (1), as C is a relatively hyperbolic space with respect to S0. This completes the proof in the base
case.
Induction step: Suppose the proposition is true when dim(FS(x)) = k for some k ≥ 0.
Now suppose dim(FS(x)) = k + 1. Let y ∈ ∂FC(x). We will show that y ∈ ∂FS(x). For n ≥ 1, choose
yn ∈ (y, x) such that dFC(x)(yn, x) = n.

Let us label the vertices of S as v1, . . . , vm where m = dim(S) + 1 and v1 = x. By Proposition 2.14,

Sn := ConvHullΩ(yn, v2, . . . , vm)

is a properly embedded simplex in C of dimension at least two and dΩ
Hauss(S, Sn) ≤ n. Then, by Theorem

A.5 part (2), there exist Tn ∈ S0 such that

Sn ⊂ NΩ(Tn;M)

for each n ≥ 1. Then

S ⊂ NΩ(Tn;M + n).

Since diamΩ(NΩ(Tn;M +n)∩NΩ(S;M +n)) = ∞, Theorem A.5 part (1) implies that S = Tn for all n ≥ 1.
Since Sn ⊂ NΩ(S;M) and yn ∈ ∂Sn, Corollary 2.3 implies that for each n ≥ 1, there exists zn ∈ ∂S∩FΩ(yn)
such that dFΩ(yn)(yn, zn) ≤ M . Since yn ∈ FΩ(x), zn ∈ ∂S ∩ FΩ(x) and dFΩ(x)(yn, zn) ≤ M . Up to passing

to a subsequence, we can assume that zn → z ∈ S. By Proposition 2.2,

y ∈ FFΩ(x)(z) = FΩ(z).

Observe that z ∈ ∂FS(x) = ∂S ∩ ∂FΩ(x) since

dFΩ(x)(x, z) = lim
n→∞

dFΩ(x)(x, zn) ≥ lim
n→∞

dFΩ(x)(x, yn)− dFΩ(x)(yn, zn)

≥ lim
n→∞

(n−M) = ∞.

Since z ∈ ∂FS(x), FS(z) ⊂ ∂FS(x). Then

dim(FS(z)) ≤ dim(∂FS(x)) = dim(FS(x))− 1 = k.

The induction hypothesis then implies that FΩ(z) = FS(z). Thus,

y ∈ FS(z) ⊂ ∂FS(x).

Hence ∂FC(x) ⊂ ∂FS(x) which finishes the proof of this claim. □

Now fix any S ∈ SΓ. By Theorem A.5 part (2), there exists M such that S ⊂ NΩ(S0;M) for some
S0 ∈ S0. If q ∈ ∂S, then Corollary 2.3 implies that there exists q0 ∈ ∂S0 such that q ∈ FΩ(q0). Since
S0 ∈ S0, the above claim implies that FΩ(q0) = FS0(q0) ⊂ ∂S0. Thus q ∈ ∂S0. This implies that ∂S ⊂ ∂S0,
that is, S ⊂ S0. Since S is a maximal properly embedded simplex, S = S0 and S ∈ S0. This finishes the
proof that S0 = SΓ. Then, by Claim 4.10, C is a relatively hyperbolic space with respect to SΓ.
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Appendix A. Relatively Hyperbolic Groups

Relatively hyperbolic groups generalize fundamental groups of finite volume non-compact hyperbolic man-
ifolds. There are several equivalent definitions due to Bowditch, Farb, and Druţu-Sapir to name a few. In
this section, we will follow the approach taken by Druţu-Sapir in [DS05]. For this, we recall the notion of
asymptotic cones and asymptotically tree-graded metric spaces.

Definition A.1. Suppose ω is a non-principal ultrafilter, (X,d) is a metric space, (xn) is a sequence of
points in X, and (Γn) is a sequence of positive numbers with limω Γn = ∞. The asymptotic cone of X with
respect to (xn) and (Γn), denoted by Cω(X,xn,Γn), is the ultralimit limω(X,Γ−1

n d, xn).

For more background on asymptotic cones, see [Dru02].

Definition A.2 ([DS05, Definition 2.1]). Let (X,d) be a complete geodesic metric space and let S be a
collection of closed geodesic subsets (called pieces).

(1) We say that (X,d) is tree-graded with respect to S if:
(a) every two different pieces have at most one common point.
(b) every simple geodesic triangle (a simple loop composed of three geodesics) in X is contained in

one piece.
(2) We say that (X,d) is asymptotically tree-graded with respect to S if all its asymptotic cones, with

respect to a fixed non-principal ultrafilter, are tree-graded with respect to the collection of ultralimits
of the elements of S.

Using asymptotically tree-graded metric spaces, we now introduce the definition of relatively hyperbolic
spaces and groups respectively.

Definition A.3 ([DS05]).

(1) A complete geodesic metric space (X,d) is relatively hyperbolic with respect to a collection of subsets
S if (X,d) is asymptotically tree-graded with respect to S.

(2) A finitely generated group (G,S) is relatively hyperbolic with respect to a family of subgroups {H1, . . . ,Hk}
if (G, dS) is relatively hyperbolic with respect to the collection of left cosets {gHi : g ∈ G, i =
1, . . . , k}.

Relative hyperbolicity is well-behaved under quasi-isometries.

Proposition A.4. Suppose (X,dX) is a relatively hyperbolic space with respect to SX and f : (X,dX) →
(Y,dY ) is a quasi-isometry. Then, (Y, dY ) is a relatively hyperbolic space with respect to SY := f(SX).

We will require the following results about relatively hyperbolic spaces.

Theorem A.5. Suppose (X,d) is a relatively hyperbolic space with respect to S.
(1) [DS05, Theorem 4.1] For any r > 0 there exists Q(r) > 0 such that: if S1, S2 ∈ S are distinct, then

diamX

(
NX(S1; r) ∩NX(S2; r)

)
≤ Q(r).

(2) [DS05, Corollary 5.8] If A ≥ 1, B ≥ 0, and f : Rk → X is an (A,B)-quasi-isometric embedding,
then there exists M = M(A,B) such that: if k ≥ 2, then there exists some S ∈ S such that

f(Rk) ⊂ NX(S;M).

(3) [DS05, Theorem 5.1] If (Y,dY ) are complete geodesic metric spaces and f : X → Y is a quasi-
isometry, then (X,dX) is relatively hyperbolic with respect to S if and only if (Y,dY ) is relatively
hyperbolic with respect to f(S).

We end this section by stating a characterization of relative hyperbolicity due to Sisto [Sis13]. In order
to state his characterization, we introduce two notions: “almost-projection system” and “asymptotically
transverse-free with respect to a geodesic path system”.

Definition A.6 ([Sis13]). Let (X,d) be a complete geodesic metric space and S a collection of subsets of
X. A family of maps ΠS = {πS : X → S}S∈S is an almost-projection system for S if there exists C > 0 such
that for all S ∈ S:

(1) if x ∈ X and p ∈ S, then d(x, p) ≥ d(x, πS(x)) + d(πS(x), p)− C,
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(2) diamX πS(S
′) ≤ C for all S, S′ ∈ S distinct, and

(3) if x ∈ X and d(x, S) = R, then diamX πS(BX(x,R)) ≤ C.

Definition A.7 ([Sis13]). Let (X,d) be a complete geodesic metric space and S a collection of subsets of
X.

(1) A geodesic triangle T in X is S-almost-transverse with constants κ and ∆ if

diamX(NX(S;κ) ∩ γ) ≤ ∆

for every S ∈ S and edge γ of T .
(2) The collection S is asymptotically transverse-free relative to a geodesic path system G if there exists

Γ, σ such that for each ∆ ≥ 1, κ ≥ σ the following holds: if T is a geodesic triangle in X whose
sides are in G and is S-almost-transverse with constants κ and ∆, then T is (Γ∆)-thin.

We finally state Sisto’s characterization of relative hyperbolicity.

Theorem A.8 ([Sis13, Theorem 2.14]). Let (X,d) be a complete geodesic metric space and S a collection
of subsets of X. Then the following are equivalent:

(1) X is relatively hyperbolic with respect to S,
(2) S is asymptotically transverse-free relative to a geodesic path system and there exists an almost-

projection system for S,

In [Sis13], the theorem is stated for path systems instead of geodesic path systems. But his methods also
imply this result, see [IZ23, Appendix] for details.
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