Hilbert Geometry
(I) Introduction

Def (Hilbert metric) $C \subseteq \mathbb{R}^{n}$ bod convex.

$$
\begin{aligned}
& d_{C}(x, y) \\
& =\frac{1}{2} \log \left(\frac{|p-y||q-x|}{|p-x||q-y|}\right) \\
& =C R(p, x, y, q)
\end{aligned}
$$

d_{c} is indeed a metric, geodesics are st. lines (in a metric sense).

Recall a property of CBs:
For any 4 lines in a plane, meeting at a pt (maybe ∞), CR determined by any 2 lines not passing through intersection of the 4 is the same.

$$
\begin{aligned}
& C R\left(p_{1}, x_{1}, y_{1}, q_{1}\right) \\
= & C R\left(p_{2}, x_{2}, y_{2}, z_{2}\right)
\end{aligned}
$$

Def ${ }^{n}$ (propely convex) $\Omega \in \mathbb{R} \mathbb{P}^{n}=\mathbb{P}\left(\mathbb{R}^{n+1}\right)$ is properly convex if Ω_{x} is convex and Ω projective hyperplane.
projectivization of a hyperplane in \mathbb{R}^{n+1}.
Example:

Take a cone in $\mathbb{R}^{3} \backslash 0$. \bar{C} Misses the hyperplane $\mathbb{R}^{2} \times 0 \backslash 0$. Then, projectiviation gives $\Omega=\mathbb{P}(C)$, a properly converse set.
(b) $C=\mathbb{R}^{+} a_{1} \oplus \mathbb{R}^{+} e_{2} \oplus \mathbb{R}^{+} e_{3}>0$.

So, C property convex.
projective C, by looking at the plane

$$
x+y+z=1
$$

we get a triangle,

$$
-11: T
$$

con ル ' \equiv
 (will be important)
later
(c) Non -example
$C=$ upper half space in \mathbb{R}^{3} intersects every hyperplane.

So, $\Omega=\mathbb{P}(C)$ is NUT properly convex.
Why properly convex sets?
Ans \rightarrow admits Hilbert metric. Let $\Omega=\mathbb{T}(C)$, C misses a hyperplane. Say it misses $x_{n+1}=0$.
Then, $\Omega=\mathbb{P}(C)$, where

$$
c \subseteq\left\{\left(x_{1}, \ldots, x_{n+1}\right) \mid x_{n+1} \neq 0\right\}
$$

is a projective chart.
\mathbb{R}^{n+1}
\mathbb{R}^{n}
induces a homeomorphism from Ω to a "bounded convex selbset of \mathbb{R}^{n}.
Hence, think of $\Omega \leftrightarrow \mathbb{P}^{n} \leftrightarrow$ dd convex subset of \mathbb{R}^{n} $\left(\subseteq \mathbb{P}^{n}\right)$

So, we can define a Hilbert metric on Ω, d_{Ω}, using these "affine charts".

Since \bar{C} stays away from $x_{n+1}=0$, its image $(\bar{\Omega}=\mathbb{P}(\bar{C}))$
in affine chart is bounded.
Interesting properties of geodesics:
(1) Nom uniqueness.

$$
\begin{aligned}
d_{\Omega}(x, w)= & c k(\hat{x}, x, w, \hat{y}) \\
= & c R\left(e_{2}, x, z, q\right) \\
= & d_{\Omega}(x, z) \\
d_{\Omega}(w, y)= & d_{\Omega}(z, y) \\
d_{\Omega}(x, y)= & d_{\Omega}(x, z) \\
& +d_{\Omega}(z, y)
\end{aligned}
$$

(2) Shape of unit ball. (depends on shape of $\partial \Omega$)

For a T, unit ball is hexagonal.

mit ball around x these are pts at in T.
(3) d_{e} is a Finsler metric (not Riemannian in general)

Let $v \in T_{x} \Omega$.
Fix a Euclidean norm $11 \cdot 11$.
Then, $F_{x}(v)=\frac{\|v\|}{2}\left(\frac{1}{\sqrt{x^{+}-x \|}}+\frac{1}{\left\|x^{-}-x\right\|}\right)$
$\left\{F_{x}\right\}_{x \in \Omega}$ induces d_{μ} on Ω.
Q When are these domains Gromov hyperbolic?
Divisible convex sets:
Let $\Omega \subseteq \mathbb{R} \mathbb{P}^{n}$ be a properly convex set. PS $(n+1, \mathbb{R})$ acts on $\mathbb{R} \mathbb{P}^{n}$.

$$
\text { Ant }(\Omega)=\left\{g \in P_{S L}(n+1, \mathbb{R}) \mid g(\Omega)=\Omega\right\} \text {. }
$$

and $\operatorname{Aut}(\Omega) \subseteq \operatorname{Isom}(\Omega)$.
Def n (divisible) Ω is divisible if $\exists \Gamma \leqslant \operatorname{Aut}(\Omega)$, discrete such that $\Gamma^{\prime} \backslash \Omega$ is compact.
NOTE: Proof \& $\operatorname{Aut}(\Omega) \subseteq \operatorname{Iscom}(\Omega)$.
Since $g(\Omega)=\Omega, g$ is actually an affine map between images of Ω in office chart \mathbb{A}^{n}. So, g is a translation \& a linear map.
Also, affine map takes lines to lines. But trandation doesn't alter cross-ratios. Now, need to check if linear map changes cross -ratios.

Let $l_{1}=A l$,
$A \rightarrow$ linear.
So, we have reduced our problem from $\operatorname{dim} n$ to $\operatorname{dim}_{l} 2$ $\binom{$ plane containing }{l_{1} and $l}$ In this plane choose basis $l_{1}=l, l_{2}=l_{1}$.
Then, $A \equiv\left(\begin{array}{ll}0 & M \\ \lambda & \sigma\end{array}\right)$
Easy to observe that $t_{1}=\lambda s_{1}, \quad t_{1}+t_{2}=\lambda\left(s_{1}+c_{2}\right)$, etc.
Hence, $C R\left(P_{1}, x_{1}, y_{1}, q_{1}\right)=C R(p, x, y, q)$
So, we have the required proof.
Related Th (T .speer): If Ω is bed convex set in \mathbb{R}^{2}, then either $P G L(\Omega)=\operatorname{com}(\Omega)$ or $\operatorname{lsom}(\Omega) / P G L(\Omega) \cong \mathbb{I}_{2}$.
(II) Examples:
(A) Hyperbolic n-spaces.
H^{2} Beltrami-Ktein model.

$$
x_{3}^{2}-x_{1}^{2}-x_{2}^{2}=1
$$

project to plane $x_{3}=1$.

$$
\left(x_{1}, x_{2}, x_{3}\right) \longmapsto\left(\frac{x_{1}}{x_{3}}, \frac{x_{2}}{x_{3}}, 1\right)
$$

So, $\left(\frac{x_{1}}{x_{3}}\right)^{2}+\left(\frac{x_{2}}{x_{3}}\right)^{2}=1-\frac{1}{x_{3}^{2}}$.
\Rightarrow Image of hyperbobid is a projective disk.

$$
\begin{aligned}
{\left[\begin{array}{ll}
(\sinh t, 0, \cosh t) & \left(\frac{\sinh t}{\cosh t}, 0,1\right) \\
& \left(\frac{e^{\prime \prime}-e^{-t}}{e^{t}+e^{t}}, 0,1\right)
\end{array}\right] }
\end{aligned}
$$

(1) $\subseteq \mathbb{R} \mathbb{P}^{2}$ is the projective disk.

Induced Riem. metric on D coincides w/ Hilbert metric d_{D}.
So, tut $(\Omega) \cong P S L(2, \mathbb{R})_{\text {coopt }}, \Omega=\mathbb{D}$.
Γ divides Ω iff Γ Notice in $\operatorname{PSL}(2, \mathbb{R})$.

NOTE: $\quad \partial \Omega=\partial \mathbb{D}$ has no straight lines (in affine
chart)
(B) Symmetric spaces (of non eft type).
$S L(3, \mathbb{R})$ acts on $\operatorname{Pos}_{3}{ }^{t r}$ by,

$$
g \cdot A=\frac{g A g t}{\operatorname{tr}\left(g A g^{t}\right)}
$$

obs that the action is transitive.
Fix basest $\quad x_{0}=\left(\begin{array}{lll}1 / 3 & & \\ & 1 / 3 & \\ & & 1 / 3\end{array}\right)$.
For array $A \in \operatorname{Pos}_{3}^{t r}, \exists \mathrm{~g}$ ot $\mathrm{gAg}=\left(\begin{array}{ll}\lambda_{1} & \\ & \lambda_{2} \\ & \lambda_{3}\end{array}\right)$,
$\lambda_{i}>0$. Then, $h=\left(\begin{array}{lll}\frac{1}{\sqrt{\lambda}} & & \\ & \frac{1}{\sqrt{\lambda_{2}}} & \\ \Rightarrow \lg A g^{t} h^{t} & =x_{0}\end{array}\right)$
$\Rightarrow \quad$

$$
\begin{aligned}
& \operatorname{stab}_{S L(3, \mathbb{R})}\left(x_{0}\right)=\left\{g \in S L(3, \mathbb{R}) \mid \quad g g^{t}=\operatorname{tr}\left(g g^{t}\right) I\right. \\
& * \begin{array}{l}
\text { Takin } \\
\operatorname{tr}\left(g s^{t}\right)=1
\end{array} \\
&=s 0(3) .
\end{aligned}
$$

Hence, $\frac{\mathrm{SL}(3,1 R)}{\text { so (3) }} \underset{\text { hame }}{\simeq} \mathrm{PO}_{\mathrm{S}_{3}}^{\text {to }}$.

Sym $\Rightarrow 3 \times 3$ symmetric matrices of $t r=1$
$=5$ dimensional affine space $\left(\mathbb{P}\left(\mathbb{R}^{6}\right)\right)$
Pos $_{3}^{\text {tr }}$ is open \& convex in sym
since $\operatorname{Pos}_{3}{ }^{m}=\left\{a_{11}>0,\left|\begin{array}{ll}a_{11} & a_{12} \\ a_{12} & a_{22}\end{array}\right|>0, \operatorname{det}(A)>0\right\}$
Pos $_{3}^{t r}$ is also bounded in sym (offline chart) :

$$
\begin{aligned}
A=\left(\begin{array}{lll}
x & b & c \\
b & y & d \\
c & d & z
\end{array}\right) \quad & \Rightarrow\left|\begin{array}{ll}
x & y \\
b & y
\end{array}\right|,\left|\begin{array}{ll}
y & d \\
d & z
\end{array}\right|,\left|\begin{array}{ll}
x & c \\
c & z
\end{array}\right|>0 \\
& \text { and } \quad \operatorname{tr}=1 \Rightarrow x+y+z=1 \\
\Rightarrow & \quad x,-1, z \in[0,1] \\
& b, c, d \in[-1,1] .
\end{aligned}
$$

Hence. $\operatorname{Pos}_{3}^{t r}$ can be equipped with Hilbert metric. (-2 $\mathrm{Pos}_{3}^{\text {tr }}$ \& $\operatorname{SL}(3,1 / \mathrm{R} / \mathrm{sO}(3)$ have very different geometries.
SLr $(3, \mathbb{R}) /$ SO (3) is simply ann \& ron-pos-curved.
\Rightarrow uniqueness of yeodesica.
But $\mathrm{PO}_{3}^{\text {tr }}$ has $P E T_{S} \Rightarrow$ rom-unique geodesics.
PETs: Let $e_{1}=\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right)$ and all re 1 matrices are $g a_{1} g^{t}$.

Let e_{2}, l_{3} be my 2 sech distinct $r k 1$ matrices. Then, e_{1}, e_{2}, e_{3} is a T wt $\partial T \subseteq \partial \Omega$.
so. $d_{\Omega}\left|=d_{T}\right|_{T} \rightarrow T$ is properly embedded.
[observe that $\partial \operatorname{Pos}_{3}^{\text {tr }}$ consists of semi-definite matrices So, lot's of Δs in the boundary. But the entire boundary is not $T s \rightarrow$ there are copies of $\mathbb{R} p^{2}$ L (ie, hyperbolic slices).

In general, this construction produces a Hilbert geometry on symmetric spaces.

So, question: are there new examples of discrete groups Γ that show up, but are not lattices?
Ans: Yes, from exotic examples dee to Benoist (low dims.) and Kapovich (all din $\geqslant 4$).
(C) $T=\mathbb{P}\left(\mathbb{R}^{+} e_{1} \Theta \mathbb{R}^{+} e_{2}\left(\uplus \mathbb{R}^{+} e_{3}\right)\right.$
\mathbb{R}^{2} acts on T by diag subgrp of $\operatorname{SL}(3, \mathbb{R})$.
Transitive action: For any $[a, b, c] \in T$, find k s.t.
$(k a)(k b)(k c)=1$.
Then, $\left(\begin{array}{lll}k a & & \\ & k b & \\ & k c\end{array}\right)\left[\begin{array}{l}1 \\ p \\ 1\end{array}\right]=\left[\begin{array}{l}a \\ b \\ c\end{array}\right]$
Free action, so $\mathbb{R}^{2} \cong$ nimeo $T \Rightarrow \mathbb{R}^{2} / \mathbb{I}^{2} \cong \mathbb{1}^{2} T$
where $\mathbb{I}^{2}=\left\{\left(\begin{array}{c}2^{m+n} \\ 2^{-m} \\ 2^{-n}\end{array}\right): m, n \in \mathbb{Z}^{\mathbb{E}}\right\}$.
(III)

Benoist's Results on Divisible Convex sets strictly convex \rightarrow no line segments in $\partial \Omega$
Th (Benoist): Ω divisible. Then Ω strictly convex $\Leftrightarrow \Omega$ Gromor hyperbolic.
Proof: Ω Gromur hyp \Rightarrow strictly convex ($\left.\begin{array}{c}\text { doessit } \\ \text { regive }\end{array}\right)$ divisible)
Let Maximal line segment $(a, b) \subseteq \partial \Omega$

$$
\begin{aligned}
& \text { Fir } z \in \Omega, \text { ut }(a, b) \\
& x_{n} \rightarrow a, y_{n} \rightarrow b, \quad u_{n} \rightarrow u . \\
& d\left(u_{n}, z\right) \rightarrow \infty .
\end{aligned}
$$

want to show, $d\left(u_{n},\left[z, z_{n}\right] \cup\left[z, y_{n}\right)\right)$
suppose, $d\left(u_{n},[z, x n]\right) \leq B$.
$a \quad u \quad b$

$$
\begin{aligned}
& \Rightarrow \exists t_{n} \in\left[z_{1}, x_{n}\right] \text { sit. } d\left(u_{n}, t_{n}\right)=d\left(u_{n},\left[z, x_{n}\right]\right) \leq B . \\
& t_{n} \rightarrow t, \& t \notin \Omega \quad\left(\sin c e u_{n} \in \partial \Omega\right)
\end{aligned}
$$

$$
\Rightarrow t=a .
$$

Hence, $u_{n} t_{n} \rightarrow$ wa $\&$ since (a, b) maximal

$$
\Rightarrow \quad P_{n} \rightarrow a
$$

(Hence, $d\left(u_{n}, t_{n}\right)=\log \left(\left(1+\frac{\left|u_{n} t_{n}\right|}{\left|t_{n} p_{n}\right|}\right)\left(1+\frac{\left(u_{n} t_{n}\right)}{\mid u_{n} q_{n}}\right)\right)$

$$
\left|u_{n} t_{n}\right| \rightarrow \mid \text { wa } \mid \neq 0, \quad\left(t_{n} p_{n} \mid \rightarrow 0\right.
$$

$\Rightarrow d\left(u_{n}, t_{n}\right) \rightarrow \infty$, contradiction
conversely, strict convexity \Rightarrow Gromov hyp. (uses driblitits) consider fat ΔS

$$
\begin{aligned}
& d\left(v_{n},\left[a_{n}, b_{n}\right] \cup\left[a_{n},(n)\right) \geqslant n\right. \\
& v_{n} \rightarrow v, a_{n}, b_{n}, c_{n} \rightarrow a, b, c \\
& \Rightarrow\left[a_{1}, b \subseteq \partial \Omega,[a, c] \subseteq \partial \Omega\right.
\end{aligned}
$$

\because no line segment in $\partial \Omega$, $a=b, a=c$
$\Rightarrow b=c$, but $v \in(b, c)$, contradiction.

Cor: $\Gamma \stackrel{Q I}{\cong} \Omega \Rightarrow \Gamma$ Groomer hyperbolic. if Ω strictly convex.
Result: Strictly convex $\Omega \Rightarrow$ unique geodesics
Th (BenoisA): $\Omega=$ divisible, open properly convex domain. TFAE (1) Ω strictly convex.
(2) Γ aroma hyperbolic.
(3) $\partial \Omega$ is c^{1}
(4) The geodesic flow is AnossV.

Pf: (1) $\Leftrightarrow(2)$ above.
(1) \Leftrightarrow (3):

$$
\begin{aligned}
& \Leftrightarrow(3): \quad \Rightarrow \quad \Gamma^{t} \text { acts on } \Omega^{*}:=\left\{f \in \mathbb{P}\left(\nu^{*}\right) \mid f(x) \neq 0 \nLeftarrow x \in \bar{\Omega}\right\}, ~
\end{aligned}
$$

Γ divides $\Omega \Leftrightarrow \Gamma^{t}$ divides Ω^{*}.

$$
\left[\operatorname{cd}(\Gamma)=\operatorname{dim} \Omega=\operatorname{dim} \Omega^{*}=\operatorname{cd}\left(\Gamma^{t}\right)\right]
$$

So, Ω strictly convex $\Leftrightarrow \Omega^{*}$ strictly convex
Ω^{*} strictly convex $\Leftrightarrow \partial \Omega$ is C^{\prime}

these blue dotted lines produce a line in $\partial \Omega^{*}$ (it is dean they are in Ω^{*} as the interred Ω only at origin)
$(1) \Leftrightarrow(4)$ is the hand port of Benoist I.
[set ${ }^{n}$ of geod flow: $\omega=(x, \xi) \in T \Omega$.
$\phi_{t}(\omega)=\left(x_{t}, \xi_{t}\right)$ where

$$
\begin{array}{ll}
z_{t}=x+\frac{e^{t}-1}{\sigma_{\omega}^{+} \cdot e^{t}+\sigma_{\omega}^{-}} \xi & \text { where } \sigma_{\omega}^{+}, \sigma_{\omega}^{-} \in \mathbb{R} \text { st. } \\
\xi=\sigma_{\omega}^{+}\left(x^{+}-x\right) \\
\xi_{t}=\text { derivative of } x_{t} . & \xi=\sigma_{\omega}\left(x-x^{-}\right)
\end{array}
$$

Th (Benos't): For Ω divisible strictly convex, geed flow on $\Gamma \backslash s \Omega$ is topologically mixing.
Both theorems are true for Riemannian negative curvature.
Cor: $\partial \Omega$ is more than $C^{\prime} \rightarrow \exists \alpha \in[1,2]$ and $\beta \in[2, \infty)$ such that $\partial \Omega$ is C^{α} regular and β convex. $\left\{\begin{array}{l}\text { if } \partial \Omega \text { is given by graph o } f(x) \text { where } f(0)=0 \text {, then } \\ c_{1} x^{\beta} \leqslant f(x) \leq C_{2} x^{\alpha} .\end{array}\right.$

$$
\begin{aligned}
A(\text { so, } \alpha \Omega & =\sup \left\{\alpha \in[1,2) \mid \partial \Omega \text { is } c^{\alpha}\right\} \\
\beta \Omega & =\inf \{\beta \in[2, \alpha) \mid \partial \Omega \text { is } B \text {-convex }] . \\
\Rightarrow \frac{1}{\alpha} \Omega^{*} & +\frac{1}{\beta_{\Omega}}
\end{aligned}=1 .
$$

Results:
(a) Γ action on $\partial \Omega$ minimal
(b) If Ω is not an ellipsoid, Γ is Zariskidense in $s L(n+1, \mathbb{R})$. $\left[\begin{array}{ccc}\text { If } \Omega & \text { ellipsoid, } T \text { lattice in so }(n, 1), \\ \text { hence not } z \text { odense in } \operatorname{sL}(n+1, \mathbb{R})\end{array}\right]$

Properties of dividing group Γ :
(1) All elements $g \in T-\{1\}$ ane biproximal and g stabilizes a unique geodesic connecting x_{g}^{+}and $x_{\bar{g}}^{-}$, where x_{g}^{+}, x_{g}^{-}are pts in $\partial \Omega$ stabilized by g.
(2) Each free hamotopy class $[\mathrm{g}]$ contains a unique geod. representative. length of this closed geod is,

$$
l_{[g]}=l_{1}(g)-l_{n+1}(g)
$$

(3) If Ω is irreducible, not symmetric, then Γ is Z oniskidense in $S L_{n+1}(\mathbb{R})$

Proof:
(1) Lift $[g]$ to a geod $t \mapsto x_{t}$ in Ω. x^{+}, x^{-}are endpts of x So, g acts as translation along x and fixes x^{+}, x^{-}.
Fix a R ball around $x_{0} \in x$ \& look at $g^{n} B\left(x_{0}, R\right)$.
obs: $g^{n} B\left(x_{0}, R\right) \rightarrow x^{+}$.

$$
\begin{aligned}
& \because d\left(g^{n} y, g^{n} x x_{0}\right)=\text { cost, let } g^{n} y \rightarrow \bar{y} \\
& \text { if }\left(\bar{y}-x^{+} \mid>0 \text {, ling } g^{n} \neq \bar{y} \text {, lin } g^{n} b \neq x^{+}\right.
\end{aligned}
$$

\Rightarrow get a line in dry through 5 and x^{+}

$$
\Rightarrow \bar{y}=x^{+} .
$$

This implies that $\lambda_{1}(g)>\lambda_{2}(g)$. similarly, $\lambda_{n}(g)>\lambda_{n+1}(g)$.
(2) As $\Pi \backslash \Omega$ compact, each homotopy cars $[g]$ has a geed representative. Uniqueness of geodesics between pts in Ω (strict convexity implies this) implies uniqueness of rep. For computing length, enough to look at a slice containing x^{t}
and x^{-}.
g restricted to this is $\left(\begin{array}{cc}\lambda_{1} & 0 \\ 0 & \lambda_{n+1}\end{array}\right) \Rightarrow x_{0}=(1-t) x^{+1-t}+t x^{-}$

$$
\therefore l_{[g]}=\log \lambda_{1}-\log \lambda_{n+1}
$$

$$
\begin{aligned}
g x_{0} & =\left(1-5 x^{+}+5 x^{-}\right. \\
& =\lambda_{1}(1-t) x^{+}+\lambda_{n}+x^{-}
\end{aligned}
$$

(11) Non-strictly convex case:

Now we want to prove results about divisible Ω where Ω is open, properly convex.
Warm up ($\operatorname{dim} 2$)
Fact (Benzecri) : $\mathcal{F}_{m}=\left\{(\Omega, x) \left\lvert\, \begin{array}{c}\Omega \leqslant \mathbb{R} \mathbb{P}^{m} \text { popes } \\ x \in \Omega\end{array}\right.\right.$ $P G L_{m+1}(\mathbb{R})$ acts on \mathcal{F}_{m}. Then, $\underset{P G L_{m+1}}{F_{m}}$ is compact Suppose non strictly convex Ω in dim 2

Pick $g \in P G L_{3}(\mathbb{R}) \quad w /$ eigenvectors a, b, c \& eigenval $(c)>$ eisenval $(b)=$ eigenvalue (a)

$$
[g \Omega]=[\Omega] \rightarrow[\Omega \infty]
$$

$\therefore h \Omega=\Omega_{\infty}$ for some $h \in P G L_{3}(\mathbb{R})$.
ie, Ω is projectively a T.
In $\operatorname{dim} 2$, dichotomy

$\Gamma \backslash \Omega$ is $g=0,1$ surface. $\theta+0$ as Ω not apt. So, $\Gamma \backslash T \underset{\text { homes torus }}{\cong}$
$\pi \Omega^{\Omega}$ is a hyperbolic surface $\Rightarrow \Omega$ nyperbolizable, $\Gamma \Omega$ higher $\underset{\substack{\text { gen se } \\ \text { surface }}}{ }$

But this example is "reducible".

So, in $\operatorname{dim} 2$, irreducible property convex divisible sets are strictly convex and hyperbolizable.

One indication: Properly Embedded T_{s} play the vole of "totally-yeodesic flats" and away from $T s, \Omega$ looks negatively calved.

Th (Benoist) [dim 3]
$\Omega_{\text {, property convex irreducible, }}^{\text {open }} \Omega \subseteq \mathbb{R} \mathbb{P}^{3}$. $\Gamma \subset \operatorname{CL}(4, \mathbb{R})$ divides Ω. let $T=$ set of properly embedded triangles in Ω.

$$
\Gamma_{T}=\text { stabilizier of } T \text { is } \Gamma
$$

Then
(1) $\forall T_{1} \neq T_{2}$ in $\tau, \quad \bar{T}_{1} \cap \bar{T}_{2}=\phi$
(2) Each \mathbb{Z}^{2} subgr of Γ stabilizes some $T \in \tau$.
(3) For all $T \in T, \Gamma_{T}$ contains \mathbb{L}^{2} as index 2 subgroup.
(4) Γ has finitely many orbits in τ.
(5) The triangles project to klein bottle or tori in $\Gamma^{\} \Omega$ and there are finitely many of them. Cutting open $M=\Gamma \backslash \Omega$ along these tari/Klein bottles, we get hyperbolizable atoroidal pieces.
(6) Each line $\sigma \subseteq \partial \Omega$ is contained in ∂T for some $T \in T$.
(7) If Ω is not strictly convex, the vertices of triangles for $T \in T$ is dense in $\partial \Omega$.

Important corollaries: $\Gamma \partial \partial \Omega$ is minimal.
[Note that for filbert symmetric spaces, $\Gamma \bigcirc \partial \Omega$ is noted of minimal. But here, for irreducible, non-homogeneous examples, $\Gamma \curvearrowright \partial \Omega$ is minimal

Similar results are not available for $\operatorname{dim} 4$ or higher.

Coxeter group examples:

Dynamical Questions

- Riem neg curve geod flue + Liouville measure $\downarrow_{\text {ergodic }}$ Anoson + low. prod structure.
- non pos cur - open question
- strictly convex case

Th (Benoist) : There is no geod flow inv. density in $S \Omega$ unless $\Omega=$ ellipsoid.
$\left\{\begin{array}{r}\text { "Density" - meas abs cant. writ. Le meas, } \\ \text { since bleb meas and Finder vol are in } \\ \text { same meas lass }\end{array}\right\}$

But Th (Crampon, Benoist): Meas of max entropy exists + unique. Geod flow is ergodic w.r.t. this measure.
(similar to negative curvature)

- non-stridfy convex case (Harry's results)

Hawneri Dynamical study of geodesic flaw for Beroist 3 mflds
constructs a Bowen-Margulis meas. on $T^{\prime} M \quad(M=\Gamma \Omega)$. that is geod flow invariant.

This requires construction of
Pat-sul meas $\left\{\mu_{x}\right\}_{x \in \Omega}$

$$
\text { T' }^{\prime} \Omega \cong(\partial \Omega \times \partial \Omega \backslash \Delta) \times \mathbb{R}
$$

\leftrightarrow Pat-sul \times Dat \leftarrow sill \times feb

$$
\mu_{x}=\lim _{s \rightarrow \delta_{5}^{+}} \mu_{x, s}
$$

where $\mu_{\text {res }}=\frac{1 \sum_{\gamma(x, 0,5)} e^{-s d(x, \gamma, x)} \delta_{\gamma \cdot x}}{\mu_{B M}}$
Wharve $P(x, y, s)=\sum_{\gamma \in \Gamma} e^{-s d(x, \gamma, y)} ; \delta_{r}=\operatorname{int}\{s \mid P(x, y, s)<\infty\}$

Then does wert meas on $\partial \Omega \times \partial \Omega>\Delta$

$$
\text { is } d \bar{\mu}_{x}\left(v^{-}, v^{+}\right)=e^{2 \delta\left\langle v^{-}, v^{+}\right\rangle x} d \mu_{x}\left(v^{-}\right) d \mu_{x}\left(v^{+}\right)
$$

${ }_{2010}^{2014}$

Qu Cor: This is a measure of maximal catropy

$$
\text { [. This: } \begin{aligned}
\text { Maximal entropy } & \left.=h_{\text {top }}=h_{\text {vol }} \geq>0\right] \\
& =\delta \Gamma \\
& \text { not known. }
\end{aligned}
$$

Q: Is this unique? Not known.
Droid Drawback: works in dim 3 only.
convex co-compact real rk 1 :
$\Gamma \leq G$ discrete subgD, G real $r k 1$ simple liegp., $\quad x=G / K$
TFAE
(i) $\Gamma \leq G$ convel co-upt
(ii) $\Gamma \rightarrow X$ arbit map is Q I embeding
(iii) Γ hyparbolic, $\exists \mathrm{inj}$, cant, Γ-equil map $\Sigma: \partial \Gamma \rightarrow X(\infty)$.

- (Keiner-keeb) If $G \quad r k \geqslant 2+\Gamma \leq G Z$. dense in G
$\Rightarrow \Gamma$ co-cpt lattice.
Progective Anojov. repss: T ward hyp, pant $\rho: \Pi \rightarrow P S L_{d H}(R)$ is Prij Anosar if

$$
\exists 3, \eta L_{d+1}(\mathbb{R}), \partial \Gamma \rightarrow \mathbb{P}\left(\mathbb{R}^{d H}\right), \mathbb{P}\left(\left(\mathbb{R}^{d+1}\right)^{*}\right)
$$

s.t (a) 3, $\quad \Gamma$-equir ifinite order
(b) For each $r \in \Gamma_{N} \omega /, x_{\gamma}^{+}$if(t) attructing fixed p^{+} of $\xi\left(x_{\gamma}^{+}\right), n\left(x_{\gamma}^{+}\right)$are attrueting fixed p 's of $\rho(\gamma)$ on $\mathbb{P}\left(\mathbb{R}^{++1+1}\right), \mathbb{P}\left(\left(x^{r^{+1}}\right)^{*}\right)$.
(c) If $x \neq y \in \partial \Gamma, \xi(x)+\operatorname{kor} \eta(y)=\mathbb{R}^{d H}$.

DGK
R(Aimur) : Let Γ_{x} norelenentary hydic but not free or susface \&P. If $P: \Gamma \rightarrow P S L_{d H}(\mathbb{R})$ is proj. Anison, twen $\exists \Omega \subseteq \mathbb{P}\left(\mathbb{R}^{2+1}\right)$ propuly cmuex st $\rho(\Gamma) \rightarrow \Omega$ is a convea co-cpt.

Thi (Zinmex): If $\lambda \leq \operatorname{tat}(\Omega)$ disonete of Ω prop rowlex, $\Omega \leq \mathbb{P}\left(\mathbb{R}^{d+f}\right)$ st. $\lambda>\Omega^{\text {inguban" }}$ convex eo-compenctly. Then $\rho: \lambda \longrightarrow P S L_{d+1}(\mathbb{R})$ is Proj. Anosov.

