
Rigidity Theorems in Geometry

Abstract

The talk will be about some interesting rigidity theorems in geometry. I will begin with
the Mostow Rigidity theorem which states that in dimension at least 3, closed hyperbolic
manifolds that are homotopic are in fact isometric. The algebraic version states that (under
certain conditions) isomorphism of lattices in semi-simple Lie groups extend to isomoprhism
of the corresponding Lie groups. I will sketch a short proof of this theorem using an entropy
rigidity theorem due to Besson-Courtois-Gallot. Some interesting properties of lattices in
semi-simple Lie groups will follow. I also plan to outline some of the interesting ideas that
go into Mostow’s original proof. I will conclude with a brief discussion about Margulis’s
superrigidity and arithmeticity theorems.

Mostow Rigidity Theorem

Mostow rigidity theorem (Geometric version) :

LetM1 andM2 be two closed (compact, without boundary) hyperbolic manifolds of dimension
n ≥ 3 with isomorphic fundametal groups Γ1 and Γ2. Then, M1 and M2 are isometric.

Note 1 :

Here, Mi = Hn/Γi. As universal covers of Mi are contractible, all homotopy groups are
isomorphic and thus, Mi are homotopic. Thus, the above theorem is saying that in dim ≥ 3,
homotopic closed hyperbolic manifolds are isometric. Also, the homotopy is homotopic to
this isometry.

Note 2:

Although this is being stated for compact manifolds, the result can be extended to finite
volume manifolds.

Note 3 :

Here, Γi are discrete co-compact subgroups of Gi = Isom(Hn) ' SO(1, n). According to
Mostow rigidity, isomoprhism of Γi lifts to an automorphism of SO(1, n).

Mostow rigidity theorem (Algebraic version) :

Let Γ1 and Γ2 be co-compact latties in SO(1, n) that are isomorphic. Then, they are conjugate
in SO(1, n).
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So, why the term rigidity?

Let M be a closed hyperbolic manifold of dimension ≥ 3, and let g1, g2 be two hyperbolic
metrics on M . Mostow rigidity theorem implies (M, g1) and (Mg2) are isometric. So, the
space of hyperbolic metrics on M has exactly one point. Hence the term rigidity.

In the algebraic setting this amounts to saying that, upto conjugacy, a discrete subgroup Γ
has a unique co-compact embedding in SO(1, n).

Why it fails for closed surfaces?

The answer comes from Teichmuller theory. For g ≥ 2, Teich(Sg) is the space of hyperbolic
structures on Sg upto homotopy. It can be proved that this space is homemorphic to R6g−6.
So, there are uncountably many different metrics on Sg although the fundamental group is
always the same.

Geometric explanation (pair of pants construction of Sg) : Each hyperbolic metric on Sg is
characteristized by 3g − 3 length parameters and 3g − 3 twist parameters – the parameters
coming from the way you put togehter the pairs of pants to get Sg.

Algebraic explanation : Teich(Sg) is homemorphic to the space of discrete, faithful represen-
tations of π1(Sg) on PSL2(R) upto conjugacy by PGL2(R). Any representation of π1(Sg)
comes from choosing 2g SL2 matrices as images of generators and incorporating 3 relations
imposed by the product of commutators in π1(Sg). The quotient by PGL2 introduces a drop
in dimension by 3.

Entropy Rigidity Result (B-C-G) and its Application :

We will look first look at an entropy rigidity result due to Besson-Courtois-Gallot and then
use it to obtain a short proof of Mostow rigidity theorem.

Volume entropy (definition) :

Let M̃ be the universal cover of (M, g). Then,

hvol(M) = lim
R→∞

log(Vol(B(x,R)))
R

,

where B(x,R) is the ball of radius R in the universal cover.

Proposition(Manning) :

hvol(M) exists and is non-negative for any compact manifold M .
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BCG Thereom :

Let (M, g) and (N, g0) be compact Riemannian manifolds of dimension n ≥ 3 where g0 is
locally symmetric metric of negative curvature. Let f : M → N be a smooth map with
deg(f) 6= 0. Then,

hvol(M)nVol(M) ≥ | deg(f)|hvol(N)nVol(N).

The equality occurs if (M,λg) is locally symmetric and f is homotopic to a Riemannian
covering map of (N, g0) by (M,λg). (for some λ > 0)

Proof of Mostow Rigidity theorem from B-C-G Theorem

Let f : (M1, g1) → (M2, g2) is a homotopy equivalence. Then, f ∗ω2 = ω1 and As f is a
homotopy equivalence, | deg(f)| = 1 and V ol(M1) = V ol(M2). Then, BCG implies,

hn
vol(M1) = hn

vol(M2)

(as both metrics are hyperbolic, the inequality is true both ways). The equality case of BCG
then implies, f is homotopic to a Riemannian covering(upto a scaling of g1 by λ). Covering
map that is homotopic to a homotopy equivalence is necessarily a bijection. Hence, the
covering map is an isometry and (M1, λg1) is isometric to (M2, g2). But V ol(M1) = V ol(M2)
implies λ = 1 and hence we have the proof.

Generalization of Mostow Rigidity :

Instead of working with SO(1, n), Mostow’s rigidity theorem can be stated for general semi-
simple Lie groups. The dimension restriction n ≥ 3 now manifests in the form of a restriction
on the groups that can appear as simple factors of the semi-simple group.

Isogeny (definition) :

Lie groups G and H are isogenous if their Lie algebras are isomorphic. The relationship of
isogeny will be denoted by G ' H.

Generalizations of the rigidity theorem of lattices:

Theorem (Mostow, Prasad, Margulis)

Let

• G1, G2 be connected semi-simple Lie groups, with trivial center and no compact factors
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• Γ1 ⊂ G1,Γ2 ⊂ G2 are isomorphic lattices
• no simple factor of Gi is isogenous with PSL(2,R)

Then, the lattice isomorphism extends to a continuous isomorphism between G1 and G2.

Note 1:

We have to exclude PSL(2,R) - it is isogenous with SO(1, 2). Hence, we are back in the case
of ‘compact surfaces’ where Mostow rigidity fails.

Note 2:

It turns out that G = SO(1, n), n ≥ 3 is one of the most difficult cases. For other semi-simple
Lie groups (precisely, those of rank ≥ 2), this theorem follows as a corollary of another rigidity
theorem - Margulis superrigidity. But then, one needs to deal with rank 1 semi-simple groups
separately.

Quasi-isometric rigdity :

Suppose Gi,Γi are as above. If in addition, Γi are irreducible, then a quasi-isometry between
Γi lifts to an isomorphism between Gi.

Superrigidity

Motivation for superrigidity :

If Φ : Zn → Rm is a homomorphism, then it extends to a homomorphism from Rn → Rn.

Superrigidity (Margulis) :

Let

• G1, G2 be connected semi-simple Lie groups, with trivial center and no compact factors
• Γ is an irreducible lattice in G1
• Φ : Γ→ G2 is a homomorphism such that Φ(Γ) is Zariski dense in G2
• G is NOT isogenous to a group of the form SO(1, n)×K or SU(1, n)×K for some

compact group K.

Then, Φ extends to a continuous homomorphism G1 → G2.
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Superrigidity implies Mostow rigidity for irreducible lattices and when rank ≥ 2:

BLANK

Arithmeticity (Margulis)

Let G be a semi-simple group that is not isogenous with SO(1, n)×K or SU(1, n)×K. Let
Γ be an irreducible lattice in G. Then Γ is an arithmetic subgroup of G.

Arithmetic groups

Arithmetic subgroups are the ones obtained through “arithmetic” constructions : like Z ⊂ R,
SL(n,Z) ⊂ SL(n,R).

Proposition: Let B be a symmetric bilinear form such that B(Zn,Zn) ⊂ Z. Then, SO(B)Z
is a co-compact lattice in SO(B)R.

Philosophically, if G ⊂ SL(n,R) is defined by polynomials over Q, then GZ is an arithmetic
subgroup of G.

But let’s consider a more interesting example where we will look at GZ[
√

2]. Define B ≡
x2 + y2 −

√
2z2 and let G = SO(B) ' SO(1, 2). Look at Γ = GZ[

√
2]. It is not obvious that Γ

is a lattice in G.

Consider the Galois embedding σ(x+
√

2y) = x−
√

2y. Observe that if g preserves B, σ(g)
preserves σ(B) = x2 + y2 +

√
2z2, that is, SO(σ(B)) ' SO(3). Also, ∆ : Γ → G × SO(3)

defined by (id, σ) has discrete image. As SO(3) is compact, this implies Γ is discrete in the
first factor G.

It can be checked that Γ is co-compact by using Mahler’s crtierion or Godement’s criterion.
Godement would be as follows : For any γ ∈ Γ look at σ(γ). It cannot be unipotent as it lies
in a compact group. So, eigenvlues 6= 1. Then, eigenvalues of γ are σ−1 of eigenvalues of σ(γ)
, implying none of them are 1. So, its not unipotent. Hence Γ co-compact.

Thus, although it is not obvious that GZ[
√

2] is a lattice in G, we can observe this looking at
G× “Compact Group”. This philosophy motivates the definiton of arithmetic subgroups.

Definition (Arithmetic groups) :

Γ ⊂ G is arithmetic subgroup if :

• there exists L ⊂ SL(n,R) defined over Q
• there exists compact normal subgroups KL ⊂ L,K ⊂ G
• group isomorphism φ : G/K → L/KL

• φ(Γ) is commensurable with LZ (the bars indicate images under quotienting by compact
normal subgroups)
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Outline of a more geometric proof of Mostow:

Uses three main ingredients :

• Role of quasi-isometries in Hn

• Their extensions to ∂Hn that are quasi-conformal
• Ergodicity of the geodesic flow on T 1(Hn) (or, more generally, for rank 1 symmetric

spaces)

Steps :

• From the homotopy equivalence f : M1 → M2, construct f̃ : Hn → Hn that is a
quasi-isometry and is equivariant under action of Γ1 and Γ2, that is,

f̃(γ.x) = f∗(γ).f̃(x)

for γ ∈ Γ1, x ∈ Hn. Use Milnor-Svarc lemma to construct this quasi-isometry. (Let Γ
act properly discontinuously, co-compactly and by isometries on a proper,
geodesic metric space X. Then, (X,d) is quasi-isometric with (Γ, dword))

• Extend this quasi-isometry to boundary of Hn in the following way : For any geodesic
ray σ of Hn, f̃ ◦ σ is a quasi-geodesic ray. Then, Morse-Mostow lemma implies that
within a bounded distance from f̃ ◦ σ, lies a hyperbolic geodesic β. Then,

f̃([σ]) = [β].

• f̃ is equivariant under action of fundamental group on the boundary ofHn. If f̃([σ]) = [β],
then

f̃(γ.[σ]) = f̃([γ.σ]) = [δ] = [f∗(γ).β] = f∗(γ).[β].

• Denote by ∂f̃ : ∂Hn → ∂Hn the restriction of f̃ to the boundary. It can be proved that
∂f̃ is a homemorphism and a quasi-conformal map → diferentiable almost everywhere.
(f : X → Y is K-quasi conformal if for all x ∈ X, f(Br(x)) is an ellipsoid whoe ratio of
major and minor axis is bounded by K.)

• Use ergodicity of geodesic flow on Hn to prove that the quasi-conformal map ∂f̃ is
actually conformal. Thus, it must be the restriction of an isometry of Hn to the
boundary. This produces the necessary isometry between M1 and M2.
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