
Volume Entropy

Abstract

I will introduce the notion of volume entropy of a Riemannian manifold and establish a
relationship with the topological entropy of the manifold. I plan to sketch Manning’s proof of
the equality of these two entropies under the assumption of non-positive sectional curvature.
To illustrate the importance of this concept of volume entropy, I will try to discuss a theorem
due to Besson, Courtois and Gallot. Among other things, it will show that on a manifold,
the locally symmetric metric of negative curvature is uniquely determined by two numbers -
its volume entropy and volume.

Preliminaries

Geodesic Avoiding technicalities, can think of them as locally length minimizing curves.

Geodesic Flow It is a one parameter group {φt} of maps on TM given by the following –
For a point (p, v) in TM, φt(p, v) = (γ(t), γ̇(t)) where γ(t) is the geodesic through point p
with velocity v. In this talk, we will concentrate on the geodesic flow on the unit tangent
bundle and will denote it by SM .

For a Riemannian manifold (M, g), can define distance between any two points x, y by
d(x, y) = inf l(γ) where the infimum is taken over all piecewise differentiable curves γ that
join x and y. With this distance function, (M,d) becomes a metric space and this metric
topology coincides with the original topology of M .

Complete manifold The geodesics are defined for all t ∈ R. Once we have this, geodesic
flow is defined for all t ∈ R.

Result If M is a complete manifold, its universal cover M̃ is also complete. It is a Riemannian
manifold equipped with the pullback metric from M .

Definitions

Topological Entropy (of the geodesic flow) - denoted by htop(φ)

Two equivalent definitions :

Definition 1 W ⊂ SM is a (T, δ) separated set for geodesic flow if for any x, y ∈ W , there
exists some t, 0 ≤ t ≤ T , such that d(φt(x), φt(y)) ≥ δ. Let N(T, δ) be the cardinality of a
maximal (T, δ) separated set. Then

htop(φ) = sup
δ>0

lim sup
T→∞

1
T

log(N(T, δ))
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Definition 2 Z ⊂ SM is a (T, δ) spanning set for the geodesic flow if for each x ∈ SM ,
there exists z ∈ Z such that d(φt(z), φt(x)) ≤ δ for all 0 ≤ t ≤ T. Then,

htop(φ) = sup
δ>0

lim sup
T→∞

1
T

log(M(T, δ)).

Note When we talk about (T, δ) separation in SM , we can use any metric on SM because
the topological entropy is independent of the metric used.

Volume Entropy - denoted by hvol(g)

Let M̃ be the universal cover of the manifold M . Volume entropy measures exponential
growth rate of volume of closed balls in the universal cover M̃ .

hvol(g) = lim
R→∞

1
R

log(V ol(B(x,R)))

Manning’s Results

Theorem 1

For a compact manifold M , the limit in the definition of volume entropy exists,
is a non-negative quantity and is independent of the choice of the point x.

Proof sketch

Observe that
B(x, r + s) ⊂ ∪y∈B(x,r)B(y, s).

Fix any b and look at the maximal subset of Yr of B(x, r) such that any two points in Yr are
atleast b distance apart. Hence

B(x, r + s) ⊂ ∪y∈YrB(y, s+ b).

Taking volumes and doing some computation,

log V ol(B(x, r)) ≤ log V ol(B(x, s)) + k log V ol(B(x, s+ A))

where k ≤ r
s
< k + 1 and A is some constant. Taking lim sup and lim inf of this inequality

proves the existence of the limit.

Independence from the choice of x is a consequence of tiranlge inequality. Non-negativity is
obvious.

So, from now on, our manifold M will be compact. Thus, the universal cover M̃ will be a
complete manifold.
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Theorem 2

For a compact manifold (M, g), htop(φ) ≥ hvol(g).

Proof sketch

Step 1 Take any r, δ and look at the annular region B(x, r + δ
2) \ B(x, r) in the universal

cover. Let Qr be a maximal subset with the property that any two points are 2δ apart. For
each q ∈ Qr, take the geodesic that connects x to q and let vq be its initial velocity. The
collection (x, vq) for all q ∈ Qr forms a (r, δ) separated set for the geodesic flow on M̃ .

Reason : Take (x, v) and (x, u). Can find q1, q2 in Qr with d(πφr(x, v), q1) < δ/2,
d(πφr(x, u)) < δ/2. Clearly, d(q1, q2) ≥ 2δ. Then

d1(φr(x, v), φr(x, u)) ≥ d(πφr(x, v), πφr(x, u)) > δ,

(d1 is any metric on SM).

Step 2 Look at (π(x), dπ(vq)) for all those points (x, vq) as above. This will form a (r, δ)
separated set for geodesic flow in SM as geodesics that are δ apart in M̃ are at least δ apart
in M . Thus,

htop(φ) ≥ lim sup
r→∞

1
r

log(#Qr)

Step 3 Can find a sequence rn → infty such that V ol(B(x, rn + δ
2) − V ol(B(x, r)) ≥

exp(λ− ε)rn where λ is the volume entropy. We will take the limit in previous step along
this subsequence. Also, for such an rn,

(#Qrn)cδ ≥ V ol(B(x, rn + δ

2)− V ol(B(x, rn) ≥ λ− ε.

This proves
htop(φ) ≥ λ.

Application of Theorem 2

ASIDE : For a compact manifold, if all sectional curvatures are positive, then we have a
uniform positive lower bound on Ricci curvature. Then, by Bonnet-Myers theorem, the
universal cover M̃ is also compact and π1(M) is finite.

More generally, all compact manifolds have finitely generated fundamental groups. Let Γ
be a finite generating set of π1(M). Let w(k) denote the number of elements of π1(M) that
can be expressed as a word in Γ using k or fewer characters. Define µ = limk→∞

1
k

log(w(k)).
Milnor had proved that this limit always exists. He had also proved that if all sectional
curvatures are non-negative, then w(k) has at most polynomial growth and if all sectional
curvatures are negative, then w(k) has exponential growth.

Let N be the Dirichlet fundamental domain. It determines a set of generators Γ = {g ∈
π1(M) : gN ∩N 6= ∅}.
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Application For a compact manifold M , htop(φ) ≥ µ

a
where µ is growth rate of π1(M) and

a = diam(N).

Proof Consider B(x, r) where x ∈ N . Then gN is contained in B(x, r) whenever the word
length of g is ≤ r

a
− 1. Thus, V ol(B(x, r) ≥ V ol(N)w(r

a
− 1) (slight abuse of notation here)

which proves the result.

Corollary If a manifold admits a metric with all sectional curvatures negative, topological
entropy of the geodesic flow would be positive.

Proof If all sectional curvatures negative, by Milnor’s result, µ is greater than 1. Scale the
metric in such a way that a = 1. µ is independent of the metric. So, htop(φ) > 0.

Theorem 3

If all sectional curvatures of M are non-positive, then htop(φ) = hvol(g).

Proof sketch

We will use the following metric d1 on SM : For (p, v) and (q, u) in SM , let σ, τ : [0, 1]→M
be the geodesics through p, q with initial velocities v, u respectively. Then, the d1 distance
between them will be given by

sup
t∈[0,1]

d(σ(t), τ(t)).

Step 1 (The role of negative sectional curvature) In negative sectional curvature, the
geodesics starting at same point move away exponentially fast and the supremum of the
distance between them occurs at the endpoint. So, the d1 distance (as defined above) is
bounded above by d(σ(0), τ(0)) + d(σ(R), τ(R)) over the interval [0, R].

Step 2 Let N be a compact fundamental domain in M̃ of diameter a. Fix any r, δ. Let
Ar = {z ∈ M̃ : r − a ≤ d(z,N) ≤ r} and Cr be a maximal subset of Ar with the property
that any two points are at least δ apart. Then

(#Cr)cδ ≤ exp((λ+ ε)(r + a+ δ)).

Let E be a maximal subset of N with the property that any two points are at least δ apart.

Step 3 Take the unique geodesics that connect points of E with points in Cr (geodesics in
M̃). If σ is such a geodesic, look at the point (σ(0), σ̇(0)) and project it down to SM . We
will show that this collection in SM is a (r− 1, 4δ) spanning set for the geodesic flow on SM .

Step 4 Take any geodesic of length r, between u0, v0 in M . Lift it to a geodesic in M̃ between
u and v where u is in N . By maximality in choice of E and Cr, we can choose y ∈ E and
z ∈ Cr such that d(y, u) ≤ δ, d(z, v) ≤ δ. Then, the geodesic between y and z has length :
r − 2δ ≤ d(y, z) ≤ r + 2δ. Select the point z′ in this geodesic such that d(y, z′) = r. Then,
show that d1 distance between initial velocity vectors of uv and yz′ is bounded above by
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d(u, y) + d(v, z′) ≤ 4δ. Project these geodesics down to M and suppose y0z0 is the projection
of yz. Then, the d1 distance in SM between initial velocity of u0v0 and y0z0 is ≤ 4δ.

So, the pushforward of the geodesics yz from M̃ produces a (r − 1, 4δ) spanning set for the
geodesic flow on SM and the number of such geodesic in M̃ is (#E)(#Cr). Finally,

htop(φ) ≤ lim sup
r→∞

1
r

log(#Cr#E) ≤ λ+ ε.

A look at volume entropy

The volume entropy is not a very good geometric quantity as it is not invariant under rescaling
of Riemannian metrics

hvol(λg) = 1√
λ
hvol(g).

However, the quantity hnvol(g)V ol(M, g) is a scale invariant dynamical quantity. Some authors
call it the normalized entropy.

Katok had proved results connecting normalized entropy with metric entropy for geodesic
flows. But I will not about that.

Gromov had proved that for any metric g on M ,

hnvol(g)V ol(M, g) ≥ 1
Cnn! ||M ||

where ||M || is the simplicial volume of M (computed only from topological data of M) and

Cn = Γ(n/2)√
πΓ((n+ 1)/2) .

Now if M carries a metric of constant negative curvature, say g0, then ||M || can be computed
explicitly in terms of V ol(M, g0). In that case, we can find a constant C ′n such that for any g,

hnvol(g)V ol(M, g) ≥ C ′nh
n(g0)V ol(M, g0).

Based on these, Gromov had conjectured that the if M has a locally symmetric metrics of
negative curvature (say g0), then the normalized entropy of (M, g0) is the minimum possible
normalized entropy.

Besson-Courtois-Gallot proved this conjecture by proving the following celebrated theorem :

Theorem 4 [BCG] Let (N, g) and (M, g0) be two compact manifolds of dimension n where
g0 is locally symmetric with negative curvature and f : N → M is a continuous map with
deg(f) 6= 0. Then,

hnvol(g)V ol(N, g) ≥ | deg(f)|hnvol(g0)V ol(M, g0).
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If n ≥ 3, then the equality is achieved only when (N, g) is locally symmetric and there exists
a positive λ such that (N, λg) is a Riemannian covering of (M, g0) with the covering map
homotopic to f .

NOTE By homothety (rescaling by positive constant λ), the equality is equivalent to having
V ol(N, λg) = | deg(f)|V ol(M, g0) and hnvol(λg) = hnvol(g0).

Application Replace N in the above theorem byM itself and f by id. Let g be any metric on
M and g0 be a locally symmetric metric of negative curvature. Then V ol(M, g) = V ol(M, g0)
and hnvol(g) = hnvol(g0) if and only if (M, g) is a Riemannian covering of (M, g0) that is
homotopic to id. Thus, (M, g) is isometric to (M, g0).

This shows that the locally symmetric metrics of negative curvature are uniquely determined
by the volume and volume entropy.

Major Application of BCG In the proof of Mostow Rigidity theorem.

Statement of Mostow Rigidity theorem

• (Geometric statement) Let N and M be compact manifolds of dimension n ≥ 3 and
constant negative sectional curvature with f∗ : π1(M)→ π1(N) isomorphism of groups.
Then, N and M are isometric (upto rescaling of metrics) and f is homotopic to this
isometry.

• (Algebraic statement) Let Γ and ∆ be lattices in SO(n, 1) where n ≥ 3 and f : Γ→ ∆
is a group isomorphism. Then, there exists g ∈ SO(n, 1) such that ∆ = gΓg−1.

Proof of Geometric version

As (N, g) and (M, g0) are aspherical manifolds (using Cartan-Hadamard theorem), f∗ is
an isomorphism of all homotopy groups. Thus, by Whitehead’s theorem (Weak homotopy
equivalence implies homotopy equivalence), f is a homotopy equivalence. Thus, | deg(f)| = 1.
As both g and g0 are hyperbolic metrics in this case,

hnvol(g)V ol(N, g) = hnvol(g0)V ol(M, g0).

Let’s rescale g such that V ol(N, λg) = V ol(M, g0). Then, by BCG, (N, λg) is isometric with
(M, g0).

6


	Volume Entropy
	Abstract

	Preliminaries
	Definitions
	Topological Entropy (of the geodesic flow) - denoted by h_{top}(\phi)
	Volume Entropy - denoted by h_{vol}(g)

	Manning's Results
	Theorem 1
	Theorem 2
	Theorem 3

	A look at volume entropy

